Skip to main content
Log in

Thermodynamic Properties of Coquimbite and Aluminocoquimbite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Coquimbite Al\({\text{Fe}}_{3}^{{3 + }}\)[SO4]6(H2O)12⋅6H2O (sample from the Javier Mine, Peru) has been studied by thermal and electron microprobe analysis, X-ray powder diffraction, Raman spectroscopy, and Mössbauer spectroscopy. The enthalpy of formation of the coquimbite from elements ∆fH0(298.15 K) = −11 118 ± 40 kJ/mol was determined by the method of solution calorimetry in melt of lead borate 2PbO∙B2O3 on a Setaram (France) Calvet microcalorimeter. The value of its absolute entropy S0(298.15 K) = 1248.3 ± 3.0 J/(mol K) was estimated, the entropy of formation ∆fS0(298.15 K) = − 5714.0 ±3.0 J/mol K), and the Gibbs energy of formation from elements ∆fG0(298.15 K) = −9411 ± 40 kJ/mol were calculated. The values of the enthalpy and Gibbs energy of formation of aluminocoquimbite Al2\({\text{Fe}}_{2}^{{3 + }}\)[SO4]6(H2O)12⋅6H2O from elements were estimated at −11 540 ± 29 and −9830 ± 29 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. S. Ackermann, B. Lazic, T. Armbruster, S. Doyle, K.‑D. Grevel, and J. Majzlan, “Thermodynamic and crystallographic properties of kornelite [Fe2(SO4)3 ~ 7.75H2O] and paracoquimbite [Fe2(SO4)3·9H2O],” Am. Mineral. 94, 1620–1628 (2009).

    Article  Google Scholar 

  2. S. K. Dedushenko and Yu. D. Perfiliev, “On the correlation of the 57Fe Mössbauer isomer shift and some structural parameters of a substance,” Hyperfine Inter. 243, # 15 (2022).

  3. F. Demartin, C. Castellano, C. A. Gramaccioli, and I. Campostrini, “Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals,” Can. Mineral. 48, 323–333 (2010a).

    Article  Google Scholar 

  4. F. Demartin, C. Castellano, C. A. Gramaccioli, and I. Campostrini, “Aluminocoquimbite, AlFe (SO4)3·9H2O, a new aluminum iron sulfate from Grotta Dell’allume, Vulcano, Aeolian Islands, Italy,” Can. Mineral. 48, 1465–1468 (2010b).

    Article  Google Scholar 

  5. M. D. Dyar, E. R. Jawin, E. Breves, G. Marchand, M. Nelms, M. D. Lane, S. A. Mertzman, D. L. Bish, and J. L. Bishop, “Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of Martian data,” Am. Mineral. 99, 914–942 (2014).

    Article  Google Scholar 

  6. J. H. Fang and P. D. Robinson, “Crystal structure and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite,” Am. Mineral. 55, 1534–1540 (1970).

    Google Scholar 

  7. R. L. Frost, Ž. Ž. Gobac, A. López, Y. Xi, R. Scholz, C. Lana, and R. M. F. Lima, “Characterization of the sulphate mineral coquimbite, a secondary iron sulphate from Javier Ortega mine, Lucanas Province, Peru – Using infrared, Raman spectroscopy and thermogravetry,” J. Mol. Struct., No. 1063, 251–258 (2014).

  8. B. Hemingway, R. R. Seal, and Chou I. -M. II, “Thermodynamic data for modeling acid mine drainage problems: Compilation and estimation of data for selected soluble iron-sulfate minerals,” U.S. Geol. Surv, Open-File Rept. 02–161, (2002).

  9. IMA List of Minerals. http://cnmnc.main.jp/IMA_Master_List_(2021–11).pdf.

  10. I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  11. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical studies of the CaO–MgO–SiO2 System,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  12. A. R. Kotel’nikov, Yu. K. Kabalov, T. N. Zezyulya, L. V. Mel’chakova, and L. P. Ogorodova, “Experimental study of celestine-barite solid solution,” Geochem. Int., No. 12, 1181–1187 (2000).

  13. J. Majzlan, C. N. Alpers, C. B. Koch, R. B. McCleskey, S. C.B. Myneni, and J. M. Neil, “Vibrational, X-ray absorption, and Mőssbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California,” Chem. Geol. 284, 296–305 (2011).

    Article  Google Scholar 

  14. J. Majzlan, T. Dordevié, and U. Kolitsch, “Hydrogen bonding in coquimbite, nominaly Fe2(SO4)3·9H2O, and the relationship between coquimbite and paracoquimbite,” Miner. Petrol. 100, 241–248 (2010).

    Article  Google Scholar 

  15. J. Majzlan, A. Navrotsky, R. B. McCleskey, and C. N. Alpers, “Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5,” Eur. J. Mineral. 18 (2), 175–186 (2006).

    Article  Google Scholar 

  16. D. Mauro, C. Biagioni, M. Pasero, H. Skogby, and F. Zaccarini, “Redefinition of coquimbite, AlFe3(SO4)6(H2O)12·6H2O,” Mineral. Mag. 84, 275–282 (2020).

    Article  Google Scholar 

  17. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, A Reference Book of Thermodynamic Values (for Geologists) (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  18. L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric Determination of the Enthalpy of Formation for Pyrophyllite,” Russ. J. Phys. Chem. A 85 (9), 1609–1611 (2011).

    Article  Google Scholar 

  19. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  20. J. T. Poitras, E. A. Cloutis, M. R. Salvatore, S. A. Mertzman, D. M. Applin, and P. Mann, “Mars analog minerals’ spectral reflectance characteristics under Martian surface conditions,” Icarus 306, 50–73 (2018).

    Article  Google Scholar 

  21. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” US Geol. Surv. Bull., No. 2131, (1995).

  22. P. D. Robinson and J. H. Fang, “Crystal structure and mineral chemistry of hydrated ferric sulfates. II. The crystal structure of paracoquimbite,” Am. Mineral. 56, 1567–1572 (1971).

    Google Scholar 

  23. N. Turenne, A. Parkinson, D. M. Applin, P. Mann, E. A. Cloutis, and S. A. Mertzman, “Spectral reflectance properties of minerals exposed to Martian surface conditions: Implications for spectroscopy–based mineral detection on Mars,” Planet. Space Sci. 210, 105377 (2022).

    Article  Google Scholar 

  24. Z. Yang and G. Giester, “Structure refinement of coquimbite and paracoquimbite from the Hongshan Cu–Au deposit, NW China,” Eur. J. Mineral. 30, 849–858 (2018).

    Article  Google Scholar 

Download references

Funding

The thermal equipment and mass spectrometer are installed at and belong to the Chemical Faculty of Lomonosov Moscow State University, and the diffractometer, scanning electron microscope, Raman microscope, and Calvet microcalorimeter are installed at and belong to the Geological Faculty of Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Gritsenko or L. P. Ogorodova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, Y.D., Ogorodova, L.P., Vigasina, M.F. et al. Thermodynamic Properties of Coquimbite and Aluminocoquimbite. Geochem. Int. 61, 643–649 (2023). https://doi.org/10.1134/S0016702923050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923050051

Keywords:

Navigation