Skip to main content
Log in

Geochemistry of organic matter in natural apatites of phosphorites according to EPR spectra of free radicals

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The following organic radicals were identified by EPR spectroscopy in apatite from marine phosphorites (granular, nodular, shelly, and microcrystalline), supergene phosphorites (from ocean islands only), and modern and fossil biological materials (human dental enamel, fossil shark teeth, and pathogenic cardioliths): ĊH3, ĊH2-R, HOĊHR,(CH3)2-ĊR,3̇org, PO 2−3 , P(OR)3, and perinaphtðenyl. Each textural and petrographic type of apatite corresponds to a specific model of organic radicals, which correlates with the type of organic matter (sapropelic, humic, guano, or collagen). The latter is controlled by the conditions of mineral formation, including climatic ones, and postdiagenetic (catagenetic) processes. A relationship was established between the EPR spectra of observed organic radicals and the valence state and structural position of impurity ions: (1) vanadium: V4+ (VO2+) in the Ca2+ II site or V5+ (VO4)3− → (PO4)3− and (2) uranium: U4+(UO2) in the Ca2+ II site or U6+ chemisorbed on the surface as UO 2+2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Berry, B. Mason, and R. V. Dietrich, Mineralogy: Concepts, Descriptions, and Determinations (Freeman, San Francisco, 1983).

    Google Scholar 

  2. R. A. Guldbrandsen, “Chemical Composition of Phosphorites of the Phosphoria Formation,” Geochim. Cosmochim. Acta 30(8), 769–778 (1966).

    Article  Google Scholar 

  3. T. G. Powell, P. J. Cook, and D. M. McKirdy, “Organic Geochemistry of Phosphorites: Relevance to Petroleum Genesis,” Am. Assoc. Pet. Geol. Bull. 59, 618–632 (1975).

    Google Scholar 

  4. V. Z. Bliskovskii, Mineral Composition and Dressibility of Phosphorite Ores (Nedra, Moscow, 1983) [in Russian].

    Google Scholar 

  5. Y. Nathan, “The Mineralogy and Geochemistry of Phosphorites,” in Phosphate Minerals, Ed. by J. O. Nriagy and P. B. Moore, (Springer, Berlin, 1984), pp. 275–291.

    Chapter  Google Scholar 

  6. E. A. Romankevich and G. N. Baturin, “Composition of Organic Matter of Phosphorites of the Southwestern Africa”, Geokhimiya No. 6, 719–726 (1972).

  7. Ya. V. Samoilov, “Mineralogy of Phosphorite Deposits,” Tr. Komissii Mosk. Sel’skhokhoz. Inst. Issled. Fosforit., Ser. I (Moscow, 1911–1915), pp. 3–7 [in Russian].

  8. M. W. Sandstrom, “Organic Geochemistry of Some Cambrian Phosphorites,” Adv. Org. Geochem. Phys. Chem. Earth 12, 123–131 (1980).

    Google Scholar 

  9. T. S. Kuz’mina, “Thermal Analysis of Calcium Phosphates from Phosphorites,” in Study of Calcium Phosphates by Physical Methods (Nauka, Novosibirsk, 1979), pp. 63–67 [in Russian].

    Google Scholar 

  10. L. G. Gilinskaya, T. N. Grigor’eva, Yu. N. Zanin, T. A. Korneva, V. N. Stolpovskaya, “Carbon Geochemistry of Natural Apatites: Evidence from Physicochemical Studies,” Geochem. Int. 39, No. 3, 244–257 (2001).

    Google Scholar 

  11. J. I. Hedges and J. M. Oades, “Comparative Organic Geochemistries of Soils and Marine Sediments,” Org. Geochem. 27(7/8), 319–361 (1997).

    Article  Google Scholar 

  12. F. A. Murav’ev, V. M. Vinokurov, A. A. Galeev, G. R. Bulka, N. M. Nizamutdinov, and N. M. Khasanova, “Paramagnetism and Nature of Dispersed Organic Matter in the Permian Deposits of Tatarstan,” Geores. 2(19), 40–45 (2006).

    Google Scholar 

  13. A. Roufosse, L. J. Richelle, and O. R. Gilliam, “Electron Spin Resonance of Organic Free Radicals in Dental Enamel and Other Calcified Tissues,” Arch. Oral Biol. 21, 227–232 (1976).

    Article  Google Scholar 

  14. G. Bacquet and Vo Quang Truong, “EPR Detection of Acetate Ions Trapping in B-Type Carbonated Fluorapatites,” J. Sol. State Chemistry 39, 148–153 (1981).

    Article  Google Scholar 

  15. H. Ishii and M. Ikeya, “Defects in Synthesized Apatite Powder and Sintered Material,” Appl. Radiat. Isotop. 44, 95–100 (1993).

    Article  Google Scholar 

  16. L. G. Gilinskaya and M. V. Chaikina, “HCO-Radical in Non-Stoichiometric Carbonateapatites,” Zh. Strukt. Khim. 20(6), 1120–1122 (1979).

    Google Scholar 

  17. L. G. Gilinskaya, M. V. Chaikina, and Yu. N. Zanin, ““On the Sensitivity of EPR Spectrums to Non-Stoichiometry of Apatite,” in Study of Calcium Phosphates by Physical Methods, Ed. by L.G. Gilinskaya (Nauka, Novosibirsk, 1979), pp. 94–96 [in Russian].

    Google Scholar 

  18. L. G. Gilinskaya, M. V. Chaikina, and M. Ya. Shcherbakova, “Study of Calcium Phosphates of the Apatite Group by EPR Methods,” Koord. Khim. 2(4), 518–524 (1976).

    Google Scholar 

  19. L. G. Gilinskaya and M. V. Chaikina, “Stabilization of Atomic Hydrogen in Calcium Phosphates,” Izv. Akad. Nauk SSSR, Neorg. Mater. 13(3), 577–579 (1977).

    Google Scholar 

  20. L. G. Gilinskaya, Yu. N. Zanin, R. G. Knubovets, T. A. Korneva, and V. I. Fadeeva, “Organophosphorous Radicals in Natural Apatites Ca5(PO4)3(F, OH),” Zh. Strukt. Khim. 33(6), 109–122 (1992).

    Google Scholar 

  21. G. N. Baturin, Phosphate Accumulation in the Ocean (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  22. L. G. Gilinskaya and Yu. N. Zanin, “Factors of Stabilization of Paramagnetic Radicals and in Natural Apatites,” Zh. Strukt. Khim. 39(5), 821–842 (1998).

    Google Scholar 

  23. L. G. Gilinskaya and Yu. N. Zanin, “EPR Study of VO2+Isomorphous Admixture in Phosphorite Apatite,” Dokl. Akad. Nauk SSSR 273(6), 1463–1466 (1983).

    Google Scholar 

  24. Yu. N. Zanin, A. G. Zamirailova, and G. M. Pisareva, “Behavior of Cadmium, Vanadium, and Zinc in Phosphorites during Catagenesis,” Dokl. Earth Sci. 374(2), 1136–1138 (2000).

    Google Scholar 

  25. I. Wertz and J. Bolton, Electron Spin Resonance (New York: McGraw-Hill, 1972).

    Google Scholar 

  26. I. N. Marov and N. A. Kostromina, NMR and EPR in the Chemistry of Coordination Compounds (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  27. L. J. Boucher, E. C. Tynan, and T. F. Yen, “Spectral Properties of Oxovanadium (IV) Complexes. I. β-Ketimines,” Inorg. Chem. 7(4), 731–736 (1968).

    Article  Google Scholar 

  28. Ya. E. Yudovich and M. P. Ketris, Vanadium in Coals (Komi nauchnyi tsentr URO RAN, Syktyvkar, 2004) [in Russian].

    Google Scholar 

  29. V. I. Slavin and N. A. Yasamanov, Methods of Paleogeographical Studies (Nedra, Moscow, 1982) [in Russian].

    Google Scholar 

  30. N. M. Strakhov, “Climate and Phosphate Accumulation,” Geol. Rudn. Mestorozhd., No. 1, 3–15 (1960).

  31. V. S. Boiko, N. V. Shabanina, and V. Ya. Il’yashenko, “Petrographic Characteristics of Granular Phosphorites from Middle Asia,” in Composition of Phosphorites, Ed. by Yu. N. Zanin (Nauka, Novosibirsk, 1979), pp. 158–164 [in Russian].

    Google Scholar 

  32. Yu. N. Zanin, “Climatic Aspects of the Evolution of Phosphate Accumulation in the Phanerozoic,” in Problems of the Evolution of Geological Processes (Nauka, Novosibirsk, 1981), pp. 122–133 [in Russian].

    Google Scholar 

  33. N. A. Krasil’nikova, “Genesis of Phosphorites and Evolution of Phosphorite Accumulation,” Litol. Polezn. Iskop., No. 5, 156–163 (1967).

  34. P. J. Cook and M. W. McElhinny, “A Reevaluation of the Spatial and Temporal Distribution of Sedimentary Phosphate Deposits in the Light of Plate Tectonics,” Econ. Geol. 74, 315–330 (1979).

    Article  Google Scholar 

  35. Yu. V. Mirtov, Yu. N. Zanin, N. A. Krasil’nikova, B. G. Gurevich, L. M. Krivoputskaya, I. G. Krasil’nikova, and Yu. K. Sukhov, Ultramicrostructures of Phosphorites (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  36. L. R. Nozdryukhina, Biological Role of Trace Elements in the Organism of Animals and Humans (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  37. L. G. Gilinskaya, T. N. Grigor’eva, G. N. Okuneva, and Yu. A. Vlasov, “Study of Mineral Pathogenic Accumulations on the Mitral Valves of Human: I. Chemical and Phase Composition,” Zh. Strukt. Khim. 44(4), 678–689 (2003).

    Google Scholar 

  38. L. G. Gilinskaya, G. N. Okuneva, and Yu. A. Vlasov, “Study of Mineral Pathogenic Accumulations on the Mitral Valves of Human. II. EPR Spectroscopy,” Zh. Strukt. Khim. 44(5), 882–889 (2003).

    Google Scholar 

  39. L. G. Gilinskaya, N. A. Rudina, G. N. Okuneva, and Yu. A. Vlasov, “Study of Mineral Pathogenic Accumulations on the Mitral Valves of Human. III Electron Miscroscopy,” Zh. Strukt. Khim. 44(6), 1141–1149 (2003).

    Google Scholar 

  40. Yu. N. Zanin, A. G. Zamirailova, L. G. Gilinskaya, A. N. Fomin, A. D. Kireev, “Uranium of Sedimentary Apatite in Catagenesis,” Geochem. Int. 38(5), 452–458 (2000).

    Google Scholar 

  41. M. Ya. Shcherbakova, L. G. Gilinskaya, and G. M. Zhidomirov, “Paramagnetic Defect Centers in Apatite,” in Structure of Molecules and Quantum Chemistry, Ed. by A. I. Brodskii (Naukova Dumka, Kiev, 1970), pp. 69–75 [in Russian].

    Google Scholar 

  42. L. G. Gilinskaya and M. Ya. Shcherbakova, “Isomorphic Substitutions and Structural Disturbances in Apatite Based on EPR Data,” in Physics of Apatite, Ed. by V. S. Sobolev (Nauka, Novosibirsk, 1975), pp. 7–63 [in Russian].

    Google Scholar 

  43. L. G. Gilinskaya, “On a New Variety of the — Center in Apatite,” Zh. Strukt. Khim. 31(6), 50–58 (1990).

    Google Scholar 

  44. P. B. Sogo, M. Nakazaki, and M. Calvin, “Free Radical from Perinaphthene,” J. Chem. Phys. 26, 1343–1345 (1957).

    Article  Google Scholar 

  45. S. H. Glarum and J. H. Marshall, “ESR of the Perinaphthenyl Radical in a Liquid Crystal,” J. Chem. Phys. 44(8), 2884–2890 (1966).

    Article  Google Scholar 

  46. H. Chandra, M. C. R. Symons, and D. R. Griffiths, “Stable Perinaphthenyl Radicals in Flints,” Nature 332, 526–527 (1988).

    Article  Google Scholar 

  47. P. J. Cook, “Spatial and Temporal Controls on the Formation of Phosphate Deposits-A Review,” in Phosphate Minerals, Ed. by J. O. Nriagu and P. B. Moore (Springer, Berlin-Heidelberg-New York-Tokyo, 1984), pp. 242–274.

    Chapter  Google Scholar 

  48. G. C. Pimentel and R. D. Spratly, Chemical Bonding Clarified through Quantum Mechanics (San Francisco, Holden-Day, 1969).

    Google Scholar 

  49. G. Bernardi, “Interaction between Hydroxyapatite and Biological Macromolecules (Proteins, Nucleic Acids),” Coll. Intern. C.N.R.S. 230, 463–465 (1975).

    Google Scholar 

  50. R. A. Beebe and A. S. Posner, “Surface Studies on Bone Mineral and Related Calcium Phosphates,” J. High Resolut. Chromatogr. Chromatogr. Commun. 230, 275–281 (1975).

    Google Scholar 

  51. H. R. Rawls, T. Bartels, and J. Arends, “Binding of Polyphosphonates at the Water Hydroxyapatite Interface,” J. Colloid Interface Sci. 87(2), 339–345 (1982).

    Article  Google Scholar 

  52. R. G. Knubovets and B. M. Maslennikov, “Study of Absorption of Flotation Reagents by Minerals Using Infra-Red Spectroscopy,” Dokl. Akad. Nauk SSSR 164(2), 387–389 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Gilinskaya.

Additional information

Original Russian Text © L.G. Gilinskaya, Yu.N. Zanin, 2012, published in Geokhimiya, 2012, Vol. 50, No. 12, pp. 1119–1139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilinskaya, L.G., Zanin, Y.N. Geochemistry of organic matter in natural apatites of phosphorites according to EPR spectra of free radicals. Geochem. Int. 50, 1007–1025 (2012). https://doi.org/10.1134/S0016702912120026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912120026

Keywords

Navigation