Skip to main content
Log in

Geochemistry of Cenomanian/Turonian boundary sediments in the mountainous part of Crimea and the northwestern Caucasus

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Detailed data obtained on the chemistry of sedimentary rocks from the mountainous part of Crimea and the northwestern Caucasus that were dated at the Cenomanian/Turonian boundary and were formed during Oceanic Anoxic Event 2 (OAE 2) make it possible to calculate the dissolved oxygen concentration in the bottom waters of the sedimentation basin. The enrichment coefficients of trace elements in the black shales are revised and an explanation is suggested for the genesis of the rocks with regard for unusual climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Starostin and O. V. Yapaskurt, “Aspects of Genetic Formational Systematics of Metalliferous Highly Carbonaceous Sedimentary Complexes,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 3, 12–23 (2007).

  2. S. O. Schlanger and H. C. Jenkyns, “Cretaceous Oceanic Anoxic Events: Causes and Consequences,” Geol. Mijnbouw 55, 179–184 (1976).

    Google Scholar 

  3. M. A. Levitan, “On Black Clays in the Atlantic Ocean,” in Problems of Transformation of Organic Matter (Nauka, Moscow, 1978), pp. 100–103 [in Russian].

    Google Scholar 

  4. K. Bak, “Deep-Water Facies Succession around the Cenomanian-Turonian Boundary in the Outer Carpathian Basin: Sedimentary, Biotic and Chemical Records in the Silesian Nappe, Poland,” Palaeoeogr. Palaeoclimatol. Palaeoecol 248, 255–290 (2007).

    Article  Google Scholar 

  5. H.-J. Brumsack, “The Trace Metal Content of Recent Organic Carbon-Rich Sediments: Implications for Cretaceous Black Shale Formation,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 232, 344–361 (2006).

    Article  Google Scholar 

  6. A. Forster, S. Schouten, K. Moriya, et al., “Tropical Warming and Intermittent Cooling during the Cenomanian/Turonian Oceanic Anoxic Event 2: Sea Surface Temperature Records from the Equatorial Atlantic,” Paleoceanography 22, PA 1219 (2007).

    Article  Google Scholar 

  7. Ya. E. Yudovich and M. P. Ketris, Geochemistry of Black Shales (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  8. Ya. E. Yudovich and M. P. Ketris, Trace Elements in Black Shales (UIF Nauka, Yekaterinburg, 1994) [in Russian].

    Google Scholar 

  9. A. S. Alekseev, L. F. Kopaevich, A. M. Nikishin, et al., “Boundary Cenomanian-Turonian Deposits in South-western Crimea. Paper 1. Stratigraphy,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 82(3), 3–29 (2007).

    Google Scholar 

  10. D. P. Naidin and S. I. Kiyashko, “Geochemical Characteristics of the Boundary Cenomanian-Turonian Deposits of Mountainous Crimea. Paper 1. Lithological Composition, Content of Organic Carbon, and Some Elements,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 69(1), 28–42 (1994).

    Google Scholar 

  11. D. P. Naidin and S. I. Kiyashko, “Geochemical Characteristics of the Boundary Cenomanian-Turonian Deposits of Mountainous Crimea. Paper 2. Isotopic Composition and Conditions of Organic Carbon Accumulation,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 69(2), 59–74 (1994).

    Google Scholar 

  12. J. Fisher, G. D. Price, M. B. Hart, and J. L. Melanie, “Stable Isotope Analysis of the Cenomanian-Turonian (Late Cretaceous) Oceanic Anoxic Event in the Crimea,” Cretaceous Res. 26(6), 853–863 (2005).

    Article  Google Scholar 

  13. N. V. Badulina and L. F. Kopaevich, “Structure and Genesis of the Boundary Cenomanian-Turonian Deposits of the Novorossiisk Synclinorium of the Northwestern Caucasus,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 3, 9–15 (2006).

  14. N. V. Badulina and L. F. Kopaevich, “Structure of the Boundary Cenomanian-Turonian Deposits of the Aksu-Dere Section, Southwestern Crimea,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 1, 22–28 (2007).

  15. N. V. Badulina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Mosk. Gos. Univ., Moscow, 2008).

    Google Scholar 

  16. O. A. Tyutyunnik, D. N. Chkhetija, M. L. Getsina, et al., “Microelement Composition of Boundary Cenomanian-Turonian Sediments of Crimea Mountains and North-Western Caucasus,” Euras. J. Analyt. Chem. 3(1), 91–112 (2008).

    Google Scholar 

  17. H. P. Kleiber, “Late Quaternary Paleoclimatic Reconstructions Along the Eurasian Continental Margin,” Ber. Polarforsch, 357, (2000).

  18. B. A. S. Van Mooy, R. G. Keil, and A. H. Devol, “Impact of Suboxia on Sinking Particulate Organic Carbon: Enhanced Carbon Flux and Preferential Degradation of Amino Acids via Denitrification,” Geochim. Cosmochim. Acta 66, 457–465 (2002).

    Article  Google Scholar 

  19. M. M. M. Kuypers, L. J. Lourens, W. I. C. Rijpstra, et al., “Orbital Forcing of Organic Carbon Burial in the Proto-North Atlantic during Oceanic Anoxic Event 2,” Earth Planet. Sci. Lett. 228, 465–482 (2004).

    Article  Google Scholar 

  20. M. M. M. Kuypers, P. Blokker, E. C. Hopmans, et al., “Archaeal Remains Dominate Marine Organic Matter from Early Albian Oceanic Anoxic Event 1b,” Palaeogeogr. Palaeoclimatol. Palaeoecol 185(1–2), 211–234 (2002).

    Article  Google Scholar 

  21. E. M. Galimov, “The Pattern of δ13C Versus HI/OI Relation in Recent Sediments as an Indicator of Geochemical Regime in Marine Basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trough,” Chem. Geol. 204, 287–301 (2004).

    Article  Google Scholar 

  22. M. A. Levitan, M. V. Bourtman, Z. N. Gorbunova, and E. G. Gurvich, “Quartz and Feldspars in the Surface Layer of Kara Sea Sediments,” Litol. Polezn. Iskop., No. 2, 115–125 (1998) [Lithol. Miner. Resour. 33, 99–108 (1998)].

  23. A. B. Ronov, A. A. Yaroshevskii, and A. A. Migdisov, Chemical Structure of the Earth’s Crust and Geochemical Balance of Major Elements (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  24. V. N. Kholodov, Geochemistry of Sedimentary Process (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  25. D. Gallego-Torres, F. Martinez-Ruiz, A. Paytan, et al., “Pliocene-Holocene Evolution of Depositional Conditions in the Eastern Mediterranean: Role of Anoxia vs. Productivity at Time of Sapropel Deposition,” Palaeogeogr., Palaeoclimat., Palaeoecol. 246(2–4), 424–439 (2007).

    Article  Google Scholar 

  26. Ph. Bonning, S. Cuypers, M. Grunwald, et al., “Geochemical Characteristics of Chilean Upwelling Sediments at ∼36°C,” Mar. Geol. 220, 1–21 (2005).

    Article  Google Scholar 

  27. N. Tribovillard, A. Riboulleau, T. Lyons, and F. Baudin, “Enhanced Trapping of Molybdenum by Sulfurized Marine Organic Matter of Marine Origin in Mesozoic Limestones and Shales,” Chem. Geol. 213, 385–401 (2004).

    Article  Google Scholar 

  28. C. R. German, B. P. Holliday, and H. Elderfield, “Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea,” Geochim. Cosmochim. Acta 55, 3533–3558 (1991).

    Article  Google Scholar 

  29. A. B. Ronov, Yu. A. Balashov, Yu. P. Girin, et al., “Tendencies in the Distribution of Rare-Earth Elements in the Sedimentary Shell and Earth’s Crust,” Geokhimiya, No. 12, 1483–1514 (1972).

  30. K. H. Wedepohl, “The Composition of the Upper Earth’s Crust and the Natural Cycles of Selected Metals. Metals in Natural Raw Materials. Natural Resources,” in Metals and Their Compounds in the Environment, Ed. by E. Merian (VCH, Weinheim, 1991), pp. 3–17.

    Google Scholar 

  31. E. Yu. Baraboshkin, A. S. Alekseev, and L. F. Kopaevich, “Cretaceous Paleogeography of the North-Eastern Peri-Tethys,” Palaeogeogr., Palaeoclimat., Palaeoecol 196(1–2), 177–208 (2003).

    Article  Google Scholar 

  32. M. A. Levitan, P. G. Ditrikh, A. N. Rudakova, and A. V. Vershinin, “Facies Variability of the Surface Layer of Sediments from the Namibian Continental Margin,” in Biological and Geological Seafloor Studies in the South Atlantic, Ed. by N. G. Vinogradova (Nauka, Moscow, 1990), pp. 193–206 [in Russian].

    Google Scholar 

  33. Yu. N. Sen’kovskii, Lithogenesis of Siliceous Sequences of the Southwestern USSR (Naukova Dumka, Kiev, 1977) [in Russian].

    Google Scholar 

  34. B. B. Sageman, S. R. Meyers, and M. A. Arthur, “Orbital Time Scale and New C-Isotope Record for Cenomanian-Turonian Boundary Stratotype,” Geology 34(2), 125–128 (2006).

    Article  Google Scholar 

  35. S. Voight, A. Aurag, F. Leis, and U. Kaplan, “Late Cenomanian to Middle Turonian High-Resolution Carbon Isotope Stratigraphy: New Data from the Munsterland Cretaceous Basin, Germany,” Earth Planet. Sci. Lett. 253, 196–210 (2007).

    Article  Google Scholar 

  36. B. B. Ellwood, J. H. Tomkin, K. T. Ratcliffe, et al., “High Resolution Magnetic Susceptibility and Geochemistry for the Cenomanian/Turonian Boundary GSSP with Correlation to Time Equivalent Core,” Palaeogeogr., Palaeoclimat., Palaeoecol. 2008, doi: 10.1016/j.papaeo.2008.01.005 (in press).

  37. B. J. Fletcher, S. J. Brentnall, C. W. Anderson, et al., “Atmospheric Carbon Dioxide Linked with Mesozoic and Early Cenozoic Climate Change,” Nature Geosci. 1, 43–48 (2008).

    Article  Google Scholar 

  38. V. M. Kotlyakov, Glaciology of Antarctica (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  39. P. M. Vail, R. M. Mitchum, and S. Thompson, “Global Cycles of Relative Changes of Sea Level,” Amer. Assos. Petrol. Geol. Mem 26, 83–97 (1978).

    Google Scholar 

  40. E. J. Brook, E. Wolff, D. Dahl-Jensen, et al., “The Future of Ice Coring: International Partnerships in Ice Core Sciences (IPICS),” PAGES News 14(1), 6–10 (2006).

    Google Scholar 

  41. I. I. Mokhov, V. A. Bezverkhnii, and A. A. Karpenko, “Milankovich’s Cycles and the Evolution of the Chemical Regime and Composition of Atmosphere Based on Data on Ice Cores from the Vostok Antarctic Station,” Mater. Glyatsiol. Issled. 95, 3–8 (2003). [in Russian].

    Google Scholar 

  42. H. P. Mort, T. Adatte, K. B. Föllmi, et al., “Phosphorus and the Roles of Productivity and Nutrient Recycling during Oceanic Anoxic Event 2,” Geology 35(6), 483–486 (2007).

    Article  Google Scholar 

  43. Ph. A. Meyers, “Paleoceanographic and Paleoclimatic Similarities between Mediterranean Sapropels and Cretaceous Black Shales,” Palaeogeogr., Palaeoclimat., Palaeoecol 235, 305–320 (2008).

    Article  Google Scholar 

  44. A. N. Meckler, G. H. Haug, D. M. Sigman, et al., “Detailed Sedimentary N Isotope Record from Cariaco Basin for Terminations I and V: Local and Global Implications,” Global Biogeochem. Cycles 21, GB4019 (2007).

    Article  Google Scholar 

  45. W. E. Dean, “Sediment Geochemical Records of Productivity and Oxygen Depletion along the Margin of Western North America during the Past 60 000 Years: Teleconnections with Greenland Ice and the Cariaco Basin,” Quatern. Sci. Rev. 26, 98–114 (2007).

    Article  Google Scholar 

  46. M. A. Levitan, V. L. Luksha, and A. V. Tolmacheva, “Evolution of Sedimentation in the Northern Part of the Sea of Okhotsk during Last 1.1 Ma,” Litol. Polezn. Iskop, No. 3, 227–246 (2007) [Lithol. Miner. Resour. 3, 203–220 (2007)].

  47. B. K. Vakarelov, J. P. Bhattacharya, and D. D. Nebrigic, “Importance of High-Frequency Tectonic Sequences during Greenhouse Times of Earth History,” Geology 34(9), 797–800 (2006).

    Article  Google Scholar 

  48. G. N. Baturin, Phosphate Accumulation in the Ocean (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levitan.

Additional information

Original Russian Text © M.A. Levitan, A.S. Alekseev, N.V. Badulina, Yu.P. Girin, L.F. Kopaevich, I.V. Kubrakova, O.A. Tyutyunnik, M.Yu. Chudetsky, 2010, published in Geokhimiya, 2010, Vol. 48, No. 6, pp. 570–591.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitan, M.A., Alekseev, A.S., Badulina, N.V. et al. Geochemistry of Cenomanian/Turonian boundary sediments in the mountainous part of Crimea and the northwestern Caucasus. Geochem. Int. 48, 534–554 (2010). https://doi.org/10.1134/S0016702910060029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702910060029

Keywords

Navigation