Skip to main content
Log in

Volatile components of natural fluids: Evidence from inclusions in minerals: Methods and results

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A database compiled by the author on volatile components in fluid inclusions (5300 analyses compiled from 300 publications) was used to compare destructive and nondestructive analytical techniques and thermal and mechanical methods for the extraction of volatiles in destructive techniques. Possible explanations are proposed for opposite conclusions published by various researchers. The paper summarizes the principal outcomes of the long-lasting discussion on the optimal methods able to provide the most reliable results. No unambiguous answer is provided. Analysis of extensive literature data indicates that each of the techniques is characterized by its own advantages and disadvantages, and an optimal solution should be selected with regard for the materials to be analyzed and formulated tasks. In any event, the results require careful interpretation. The average composition of natural fluids calculated from extensive statistical material is as follows (mol %): 70.3 H2O, 21.4 CO2, 6.3 CH4, 2.0 N2, and 0.07 H2S. The distribution of volatile components was examined in minerals from hydrothermal ore deposits of various types (gold, tungsten, tin, and base-metal) and metamorphic rocks

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Brewster, “On the Existence of Two New Fluids in the Cavities of Minerals, Which Are Immiscible and Possess Remarkable Physical Properties,” Trans. Roy. Soc. Edinburgh 10, 1–14 (1823).

    Google Scholar 

  2. H. Davy, “On the State of Water and Aeriform Matter in Cavities Found in Certain Crystals,” Phil. Trans. Roy. Soc. London, 367–376 (1822).

  3. A. P. Karpinskii, “On Finds of Inclusions of Liquid Carbonaceous Anhydride in Mineral Matters,” Gornyi Zh. 2(4–5), 96–117 (1880).

    Google Scholar 

  4. H. C. Sorby, “On the Microscopical Structure of Micaschist,” British. Ass. Adv. Sci., Sections, 78 (1856).

  5. H. C. Sorby, “On the Microscopical Structure of Some Precious Stones,” Monthly Microscop. J. 1, 220–224 (1869).

    Google Scholar 

  6. V. I. Vernadskii, Evolution of the Earth’s Crust Minerals. Vol. 2. Evolution of Natural Waters (1933), Pt. 1. Vyp. 1.

  7. N. P. Ermakov, Study of Mineral-Forming Solutions (Khar’kov. Univ., 1950) [in Russian].

  8. E. Roedder, “Technique for the Extraction and Partial Chemical Analysis of Fluid-Field Inclusions from Minerals,” Econ. Geol. 53(3), 235–269 (1958).

    Article  Google Scholar 

  9. Z. I. Kovalishin, “Study Results of Gas Components of Inclusions in the Minerals of Volhynia Pegmatites,” in Mineralogical Thermometry and Barometry (1965), pp. 237–240 [in Russian].

  10. V. A. Kalyuzhnyi, I. M. Svoren, and E. L. Platonova, “Experience in Application of MX-1303 Mass-Spectrometer for Gas Analysis of Fluid Inclusions and Problems of Hydrogen Determination in Them,” in Proceedings of 4th Regional Conference on Thermobarogeochemistry of Mineral Formation, Rostov, Russia, 1973 (Rostovsk. Univ., 1973), pp. 306–307.

  11. O. F. Mironova, “Gaschromatographic Analysis of Mineral Inclusions,” Zh. Anal. Khim. 28(8), 1561–1564 (1973).

    Google Scholar 

  12. G. J. Rosasco and E. Roedder, “Application of a New Laser-Excited Raman Spectrometer to Nondestructive Analysis of Sulfate in Individual Phases in Fluid Inclusions in Minerals,” in Proceedings of 25th International Geological Congress, Sydney, Australia, 1976 (Sydney, 1976), Vol. 3, pp. 812–813.

    Google Scholar 

  13. N. Guilhaumou, P. Dhamelincourt, J.-C. Touray, and J. Barbillat, “Analyse a la Microsonde a Effet Raman d’Inclusions Gazeuses du Systeme N2-CO2,” Acad. Sci. 287(15), 1317–1319 (1978).

    Google Scholar 

  14. P. Dhamelincourt, J.-M. Beny, J. Dubessy, and B. Poty, “Analyse d’Inclusions Fluides a la Microsonde MOLE a Effet Raman,” Bull. Mineral. 102(5–6), 600–610 (1979).

    Google Scholar 

  15. V. B. Naumov, M. V. Akhmanova, A. V. Sobolev, and P. Damelinkur, “Application of Laser Raman Microprobe in Studies of Gas Phase of Mineral Inclusions,” Geokhimiya, No. 7, 1027–1034 (1986).

  16. J. Konnerup-Madsen, J. Dubessy, and J. Rose-Hansen, “Combined Raman Microprobe Spectrometry andMicrothermometry of Fluid Inclusions in Minerals from Igneous Rocks of the Gardar Province (South Greenland),” Lithos 18(4), 271–280 (1985).

    Article  Google Scholar 

  17. R. C. Murray, “Hydrocarbon Fluid Inclusions in Quartz,” Am. Assoc. Petrol. Geol. Bull 41(5), 950–952 (1957).

    Google Scholar 

  18. O. F. Mironova and A. N. Salazkin, “Sources of Errors during Destructive Gas Analysis of Fluid Inclusions and Ways of Their Overcoming,” Geokhimiya, No. 5, 697–708 (1993).

  19. D. I. Norman and F. J. Sawkins, “Analysis of Volatiles in Fluid Inclusions by Mass Spectrometry,” Chem. Geol. 61, 1–10 (1987).

    Article  Google Scholar 

  20. G. A. Malyuk and D. K. Voznyak, “Mass-spectrometric Determination of Gas Composition of Inclusions of Mineral-Forming Fluids in Quartz during Its Heating under Vacuum,” Geokhimiya, No. 6, 819–824 (1986).

  21. N. B. Piperov and N. P. Penchev, “A Study on Gas Inclusions in Minerals. Analysis of the Gases from Micro-Inclusions in Allanite,” Geochim. Cosmochim. Acta 37(9), C. 2075–2097 (1973).

    Article  Google Scholar 

  22. G. B. Naumov, O. F. Mironova, and V. B. Naumov, “Carbon Compounds in Hydrothermal Inclusions,” Geokhimiya, No. 8, 1243–1251 (1976).

  23. V. F. Kiselev, Surface Phenomena in Semiconductors and Dielectrics (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  24. G. S. Khodakov, “Activated Absorption of Inert Gases under Usual Conditions on the Fresh Surfaces Formed during Crushing of Solids,” Dokl. Akad. Nauk SSSR 168(1), 158–160 (1966).

    Google Scholar 

  25. J. L. Zimmermann, A. Jambon, and G. Guyetand, “Manometric and Mass-Spectrometric Analysis of Fluids in Geological Materials,” Geochem. J. 22(1), 9–21 (1988).

    Google Scholar 

  26. H. D. Jones and S. E. Kesler, “Fluid Inclusion Gas Chemistry in East Tennessee Mississippi Valley-Type Districts: Evidence for Immiscibility and Implications for Depositional Mechanisms,” Geochim. Cosmochim. Acta 56, 137–154 (1992).

    Article  Google Scholar 

  27. A. Cheilletz, J. Dubessy, C. Kosztolanyi, et al., “Les Fluides Moleculaires d’un de Quartz Hydrothermal: Comparaison de Techniques Analytiques Ponctuelles et Globales, Contamination des Fluides Occlus par des Composes Carbones,” Bull. Mineral 107(2), 169–180 (1984).

    Google Scholar 

  28. J. R. Graney and S. E. Kesler, “Factors Affecting Gas Analysis of Inclusions Fluid by Quadrupole Mass Spectrometry,” Geochim. Cosmochim. Acta 59(19), 3977–3986 (1995).

    Article  Google Scholar 

  29. E. Roedder, Fluid Inclusions in Minerals (Rev. Mineral., Miner. Soc. Amer., 1984, Vol. 12; Mir, Moscow, 1987).

    Google Scholar 

  30. R. Goguel, “Ein Beitragzum Chemismus von Gas- und Flussigkeitseinschlussen in Gesteinsbildenden Mineralen,” Nachr. Acad. Wiss. Gottingen II 21, 267–278 (1965).

    Google Scholar 

  31. C. Barker and B. E. Torkelson, “Gas Adsorption on Crushed Quartz and Basalt,” Geochim. Cosmochim. Acta 39(2), 212–218 (1975).

    Article  Google Scholar 

  32. J. R. Graney, S. E. Kesler, and H. D. Jones, “Application of Gas Analysis of Jasperoid Inclusion Fluids to Exploration for Micron Gold Deposits,” J. Geochem. Explor. 42(1), 91–106 (1991).

    Article  Google Scholar 

  33. M. Fu, T. A. P. Kwak, and T. P. Mernagh, “Fluid Inclusion Studies of Zoning in the Dachang Tin-Polymetallic Ore Field, People’s Republic of China,” Econ. Geol. 88(2), 283–300 (1993).

    Article  Google Scholar 

  34. J. N. Moore, D. I. Norman, and B. M. Kennedy, “Fluid Inclusion Gas Compositions from an Active Magmatic-Hydrothermal System: A Case Study of the Geysers Geothermal Field, USA,” Chem. Geol. 173(1–3), 3–30 (2001).

    Article  Google Scholar 

  35. S. V. Ikorskii and E. A. Evetskaya, “On CO2 Sorption during Extraction of Gases from Rocks and Minerals in a Vacuum Mill,” Geokhimiya, No. 11, 1712–1719 (1975).

  36. O. F. Mironova, N. I. Savel’eva, S. V. Ikorskii, and Yu. V. Vasyuta, “Comparison of Results of Bulk Analysis of Fluid Inclusions by Different Methods of Extraction of Gas Phase,” Geokhimiya, No. 1, 111–117 (1985).

  37. O. F. Mironova, A. N. Salazkin, and A. V. Garanin, “Comparison of Results of Gas Analysis of Fluid Inclusions by Mechanical and Thermal Destruction,” Geokhimiya, No. 1, 78–87 (1992).

  38. N. Guilhaumou, “Accurate Analysis of Fluid Inclusions by Laser Molecular Microprobe (MOLE) and by Microthermometry,” Travaux Lab. Geol., Ecole Normale Superieure, No. 14, 68 (1982).

  39. J. Dubessy, B. Poty, and C. Ramboz, “Advances in COHNS Fluid Geochemistry Based on Micro-Raman Spectrometric Analysis of Fluid Inclusions,” Eur. J. Mineral. 1(4), 517–534 (1989).

    Google Scholar 

  40. R. L. Linnen and A. E. Williams-Jones, “Genesis of a Magmatic Metamorphic Hydrothermal System: the Sn-W Polymetallic Deposits at Pilok, Thailand,” Econ. Geol. 90(5), 1148–1166 (1995).

    Article  Google Scholar 

  41. M.-C. Boiron, M. Cathelineau, D. A. Banks, et al., “P-T-X Conditions of Late Hercynian Fluid Penetration and the Origin of Granite-Hosted Gold Quartz Veins in Northwestern Iberia: A Multidisciplinary Study of Fluid Inclusions and Their Chemistry,” Geochim. Cosmochim. Acta 60(1), 43–57 (1996).

    Article  Google Scholar 

  42. G. Ruggieri, M. Cathelineau, M.-Ch. Boiron, and Ch. Marignac, “Boiling and Fluid Mixing in the Chlorite Zone of the Larderello Geothermal System,” Chem. Geol. 154(1–4), 237–256 (1999).

    Article  Google Scholar 

  43. T. Graupner, U. Kempe, E. T. C. Spooner, et al., “Microthermometric, Laser Raman Spectroscopic, and Volatile-Ion Chromatographic Analysis of Hydrothermal Fluids in the Paleozoic Muruntau Au-Bearing Quartz Vein Ore Field, Uzbekistan,” Econ. Geol. 96(1), 1–23 (2001).

    Article  Google Scholar 

  44. A. M. Van. Kerkhof, J. L. R. Touret, C. Maijer, and J. B. H. Jansen, “Retrograde Methane-Dominated Fluid Inclusions from High-Temperature Granulites of Rogaland, Southwestern Norway,” Geochim. Cosmochim. Acta 55(9), 2533–2544 (1991).

    Article  Google Scholar 

  45. O. F. Mironova, A. N. Salazkin, and V. B. Naumov, “Bulk and Point Methods in Analysis of Volatile Components of Fluid Inclusions,” Geokhimiya, No. 7, 974–984 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Mironova.

Additional information

Original Russian Text © O.F. Mironova, 2010, published in Geokhimiya, 2010, Vol. 48, No. 1, pp. 89–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironova, O.F. Volatile components of natural fluids: Evidence from inclusions in minerals: Methods and results. Geochem. Int. 48, 83–90 (2010). https://doi.org/10.1134/S0016702910010052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702910010052

Keywords

Navigation