Skip to main content
Log in

Geochronology of eruptions and parental magma sources of Elbrus volcano, the Greater Caucasus: K-Ar and Sr-Nd-Pb isotope data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Complex geochronological and isotope-geochemical studies showed that the Late Quaternary Elbrus volcano (Greater Caucasus) experienced long (approximately 200 ka) discrete evolution, with protracted periods of igneous quiescence (approximately 50 ka) between large-scale eruptions. The volcanic activity of Elbrus is subdivided into three phases: MiddleNeopleistocene (225–170 ka), Late Neopleistocene (110–70 ka), and Late Neopleistocene-Holocene (less than 35 ka).

Petrogeochemical and isotope (Sr-Nd-Pb) signatures of Elbrus lavas point to their mantle-crustal origin. It was shown that hybrid parental magmas of the volcano were formed due to mixing and/or contamination of deep-seated mantle melts by Paleozoic upper crustal material of the Greater Caucasus. Mantle reservoir that participated in the genesis of Elbrus lavas as well as most other Neogene-Quaternary magmatic rocks of Caucasus was represented by the lower mantle “Caucasus” source. Primary melts generated by this source in composition corresponded to K-Na subalkali basalts with the following isotopic characteristics: 87Sr/86Sr = 0.7041 ± 0.0001, ƒNd = +4.1 ± 0.2, 147Sm/144Nd = 0.105–0.114, 206Pb/204Pb = 18.72, 207Pb/204Pb = 15.62, and 208Pb/204Pb = 38.78. The temporal evolution of isotope characteristics for lavas of Elbrus volcano is well described by a Sr-Nd mixing hyperbole between “Caucasus” source and estimated average composition of the Paleozoic upper crust of the Greater Caucasus. It was shown that, with time, the proportions of mantle material in the parental magmas of Elbrus gently increased: from ∼60% at the Middle-Neopleistocene phase of activity to ∼80% at the Late Neopleistocene-Holocene phase, which indicates an increase of the activity of deep-seated source at decreasing input of crustal melts or contamination with time. Unraveled evolution of the volcano with discrete eruption events, lacking signs of cessation of the Late Neopleistocene-Holocene phase, increasing contribution of deep-seated mantle source in the genesis of Elbrus lavas with time as deduced from isotope-geochemical data, as well as numerous geophysical and geological evidence indicate that Elbrus is a potentially active volcano and its eruptions may be resumed. Possible scenarios were proposed for evolution of the volcano, if its eruptive activity were to continue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Chernyshev, V. A. Lebedev, S. N. Bubnov, et al., “Stages of Magmatic Activity in the Elbrus Volcanic Center (Greater Caucasus): Evidence from IsotopeGeochronological Data,” Dokl. Akad. Nauk 380(3), 384–389 (2001) [Dokl. Earth Sci. 380, 848–852 (2001)].

    Google Scholar 

  2. S. N. Bubnov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 2003).

    Google Scholar 

  3. V. A. Lebedev, S. N. Bubnov, I. V. Chernyshev, et al., “Basic Magmatism in the Geological History of the Elbrus Neovolcanic Area, Greater Caucasus: Evidence from K-Ar and Sr-Nd Isotope Data,” Dokl. Akad. Nauk 406(1), 78–82 (2006) [Dokl. Earth Sci. 406, 37–40 (2006)].

    Google Scholar 

  4. V. M. Gazeev, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 2003).

    Google Scholar 

  5. N. V. Koronovskii, “Geological Structure and Evolution of Elbrus Volcano,” in Elbrus Glaciation (Mosk. Gos. Univ., Moscow, 1968) [in Russian].

    Google Scholar 

  6. Geological Map of the Elbrus Volcanic Area on a Scale of 1: 50000 (FGUGP “SevKavGeologiya”, 1996).

  7. G. V. Abikh, “Explanation of Geological Section of the Northern Slope of the Caucasus Range from Elbrus to Beshtau,” in Caucasian Calendar for 1853 (Tiflis, 1852), pp. 440–471.

  8. E. E. Milanovskii and N. V. Koronovskii, Orogenic Volcanism and Tectonics of the Alpine Belt of Eurasia (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  9. A. M. Borsuk, Mesozoic and Cenozoic Magmatic Formations of the Greater Caucasus (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  10. I. V. Chernyshev, V. A. Lebedev, S. N. Bubnov, et al., “Isotopic Geochronology of Quaternary Volcanic Eruptions in the Greater Caucasus,” Geokhimiya, No. 11, 1–16 (2002) [Geochem. Int. 40, 1042–1055 (2002)].

  11. V. A. Lebedev, I. V. Chernyshev, S. N. Bubnov, et al., “Chronology of Magmatic Activity of the Elbrus Volcano (Greater Caucasus): Evidence from K-Ar Isotope Dating of Lavas,” Dokl. Akad. Nauk 405(3), 389–394 (2005) [Dokl. Earth Sci. 405, 1321–1326 (2005)].

    Google Scholar 

  12. O. A. Bogatikov, I. V. Melekestsev, A. G. Gurbanov, et al., “Radiocarbon Dating of Holocene Eruptions of the Elbrus Volcano in the Northern Caucasus, Russia,” Dokl. Akad. Nauk 363(2), 219–221 (1998) [Dokl. Earth Sci. 363, 1093–1095 (1998)].

    Google Scholar 

  13. O. A. Bogatikov, I. V. Melekestsev, A. G. Gurbanov, et al., “The Elbrus Caldera in the Northern Caucasus,” Dokl. Akad. Nauk 363(4), 515–517 (1998) [Dokl. Earth Sci. 363, 1202–1204 (1998)].

    Google Scholar 

  14. O. A. Bogatikov, I. V. Melekestsev, A. G. Gurbanov, et al., “Catastrophic Pleistocene and Holocene Activity of the Elbrus Volcanic Center (North Caucasus, Russia): Events and Chronology Based on 14C, EPR, and K-Ar Dating,” Vulkanol. Seismol., No. 2, 3–17 (2001).

  15. O. A. Bogatikov, A. G. Gurbanov, D. G. Koshchug, et al., “The EPR Dating of the Rock-Forming Quartz from Volcanic Rocks of the Elbrus Volcano, Northern Caucasus, Russia” Dokl. Akad. Nauk 385(1), 92–96 (2002) [Dokl. Earth Sci. 385, 570–573 (2002)].

    Google Scholar 

  16. O. A. Bogatikov, M. Ch. Zalikhanov, B. S. Karamurzov, et al., Natural Processes on the Territory of Kabardino-Balkaria (IGEM RAN, Moscow, 2004) [in Russian].

    Google Scholar 

  17. M. V. Abdulov, “On Geological Nature of the Elbrus Gravity Anomaly,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 9, 67–74 (1962).

  18. N. V. Koronovskii and L. I. Demina, “Collisional Late Cenozoic Volcanism of the Great Caucasus,” in Proceedings of 3rd All-Russia Symposium on Volcanology and Paleovolcanology. Vol. 1. Volcanism and Geodynamics, Ulan Ude, Russia, 2006 (Buryatsk. Nauchn. Ts. SO RAN, Ulan-Ude, 2006), pp. 219–223 [in Russian].

    Google Scholar 

  19. S. V. Vyatkin, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Mosk. Gos. Univ., Moscow, 2007).

  20. I. V. Chernyshev, V. A. Lebedev, and M. M. Arakelyants, “K-Ar Dating of Quaternary Volcanics: Methodology and Interpretation of Results,” Petrologiya 14(1), 69–89 (2006) [Petrology 14, 62–80 (2006)].

    Google Scholar 

  21. I. V. Chernyshev, A. V. Chugaev, and K. N. Shatagin, “High-Precision Pb Isotope Analysis by Multicollector-ICP-Mass-Spectrometry Using 205Tl/203Tl Normalization: Optimization and Calibration of the Method for the Studies of Pb Isotope Variations,” Geokhimiya, No. 11, 1155–1168 (2007) [Geochem. Int. 45, 1065–1076 (2007)].

  22. R. H. Steiger and E. Jager, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geoand Cosmochronology,” Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  Google Scholar 

  23. V. G. Molyavko, I. M. Ostafiichuk, and N. V. Koronovskii, “Evolution, Chemistry, and Genesis of the Elbrus Volcanics,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 6, 31–46 (1980).

  24. V. M. Gazeev, A. A. Nosova, L. V. Sazonova, et al., “Petrogenetic Interpretation of Phenocryst Association in the Pleistocene-Holocene Volcanics of Elbrus (North Caucasus),” Vulkanol. Seismol., No. 2, 24–45 (2004).

  25. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol. 25, 956–983 (1984).

    Google Scholar 

  26. J. B. Whalen, K. L. Currie, and B. W. Chapell, “A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

  27. B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A Geochemical Classification for Granitic Rocks,” J. Petrol 42, 2033–2048 (2001).

    Article  Google Scholar 

  28. V. A. Lebedev, S. N. Bubnov, I. V. Chernyshev, et al., “Geochronology and Genesis of Subalkaline Basaltic Lava Rivers at the Dzhavakheti Highland, Lesser Caucasus: K-Ar and Sr-Nd Isotopic Data,” Geokhimiya, No. 3, 243–258 (2007) [Geochem. Int. 45, 211–225 (2007)].

  29. V. A. Lebedev, I. V. Chernyshev, A. V. Chugaev, et al., “K-Ar Age and Sr-Nd Characteristics of Subalkali Basalts in the Central Georgian Neovolcanic Area (Greater Caucasus),” Dokl. Akad. Nauk 408(4), 517–522 [Dokl. Earth Sci. 408, 657–661 (2006)].

    Google Scholar 

  30. V. A. Lebedev, S. N. Bubnov, I. V. Chernyshev, et al., “Geochronology and Genesis of the Young (Pliocene) Granitoids of the Greater Caucasus: Dzhimara Multiphase Massif of the Kazbek Neovolcanic Area,” Geokhimiya, No. 6, 582–602 (2009) [Geochem. Int. 47, 550–567 (2009)].

  31. B. G. Polyak, I. L. Kamenskii, E. M. Prasolov, et al., “Helium Isotopes in Gases of the Northern Caucasus: Implications for Heat and Mass Influx from the Mantle,” Geokhimiya, No. 4, 383–397 (1998) [Geochem. Int. 36, 329–342 (1998)].

  32. A. W. Hofmann, “Mantle Geochemistry: the Message from Oceanic Volcanism,” Nature 385(16), 219–229 (1997).

    Article  Google Scholar 

  33. Yu. A. Kostitsyn and A. A. Kremenetskii, “Age of Final Magmatic Stage of the Eldjurtu Granite: Rb-Sr Isochron Dating of Apatites,” Geokhimiya, No. 7, 925–931 (1995).

  34. A. Z. Zhuravlev and E. V. Negrei, “Synchronous Formation of the Eldzhurta Granite and Ore-Bearing Metasomatites of Tyrnyauz (North Caucasus) Based on Rb-Sr Data,” Dokl. Akad. Nauk SSSR 332(4), 483–487 (1993).

    Google Scholar 

  35. I. R. Pohl, J. S. Hess, B. Kober, et al., “Origin and Petrogenesis of Miocene Trachyrhyolites (A-types) from the Northern Part of the Greater Caucasus,” in Magmatism of Rifts and Foldbelts (Nauka, Moscow, 1993), pp. 108–125 [in Russian].

    Google Scholar 

  36. S. B. Jakobsen and G. J. Wasserburg, “Sm-Nd Isotopic Evolution of Chondrites and Achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  37. A. Zindler and S. Hart, “Chemical Geodynamics,” Annu. Rev. Earth Planet. Sci., No. 14, 493–571 (1986).

  38. P. D. Kempton, R. S. Harmon, C. J. Hawkesworth, et al., “Petrology and Geochemistry of Lower Crustal Granulites from the Geronimo Volcanic Field, Southeastern Arizona,” Geochim. Comochim. Acta 54(12), 3401–3426 (1990).

    Article  Google Scholar 

  39. K. H. Wedepohl, Handbook of Geochemistry. Vol. II/4. 82 (Lead) (Springer-Verlag, Berlin-Heidelberg-New York, 1974).

    Google Scholar 

  40. I. V. Chernyshev, M. M. Arakelyants, V. A. Lebedev, et al., “K-Ar Isotope Systematics and Age of Lavas from the Quaternary Kazbek Volcanic Province, Greater Caucasus,” Dokl. Akad. Nauk 367(6), 810–814 (1999) [Dokl. Earth Sci. 367, 862–866 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lebedev.

Additional information

Original Russian Text © V.A. Lebedev, I.V. Chernyshev, A.V. Chugaev, Yu.V. Gol’tsman, E.D. Bairova, 2010, published in Geokhimiya, 2010, Vol. 48, No. 1, pp. 45–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.A., Chernyshev, I.V., Chugaev, A.V. et al. Geochronology of eruptions and parental magma sources of Elbrus volcano, the Greater Caucasus: K-Ar and Sr-Nd-Pb isotope data. Geochem. Int. 48, 41–67 (2010). https://doi.org/10.1134/S0016702910010039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702910010039

Keywords

Navigation