Skip to main content
Log in

Conditions of magmatic crystallization of Na-bearing majoritic garnets in the earth mantle: Evidence from experimental and natural data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Results of experimental study at 7.0–8.5 GPa and 1300–1900°C of the systems pyrope Mg3Al2Si3O12 (Prp)-Na2MgSi5O12 (NaGrt) modeling solid solutions of Na-bearing garnets, Prp-jadeite NaAlSi2O6 (Jd) in a simplified mode demonstrating melting relations of Na-rich eclogite, and Prp-Na2CO3 are presented. Prp-Na2MgSi5O12 join is a pseudobinary that results from the decomposition of NaGrt on to coesite and Na-pyroxene. Synthesized garnets are characterized by Na admixture (>0.32 wt % Na2O) and excess Si (3.05–3.15 f.u.). Maximal Na2O concentrations (1.5 wt % Na2O) are reached on the solidus of the system at 8.5 GPa. Clear correlation between Na and Si was established in synthesized garnets; this provides evidence for heterovalent isomorphism of the Mg + Al → Na + Si type with the appearance of Na2MgSi5O12 component as a mechanism of such garnet formation. The Prp-Jd join is also pseudobinary that results from the formation of two series of solid solutions: (1) garnet (Prp-NaGrt-majorite) and (2) pyroxene (Jd-clinoenstatite-Eskola molecule), and the appearance of kyanite at the solidus of the system, where garnets with the highest Na2O contents (>0.8 wt %) are formed. In spite of quite a wide field of garnet crystallization (20–100 mol % Prp), garnets with significant sodium concentration (>0.3 wt % Na2O) are formed in a Jd-rich part of the system (20–50 mol % Prp). In the Prp-Na2CO3 system at 8.5 GPa garnet crystallizes in a wide range of starting compositions as a liquidus mineral containing up to 0.9 wt % Na2O. Our experiments demonstrate that melt alkalinity, as well as PT-parameters control the crystallization of Na-bearing majoritic garnets. The results obtained provide evidence for the fact that the majority of natural diamonds with inclusions of Na-bearing majoritic garnets containing <0.4 wt % Na2O were formed in alkaline silicate (carbonate-silicate) melts at a pressure of <7 GPa. Only a small portion of garnets with higher sodium concentrations (>1 wt % Na2O) could be formed at a pressure of >8.5 GPa. 1 This article was translated by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and the Problems of Composition of Upper Mantle (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  2. J. W. Harris, “Diamond Geology,” in The Properties of Natural and Synthetic Diamond, Ed. by J. E. Field (Academic Press, London, 1992), pp. 345–393.

    Google Scholar 

  3. H. O. A. Meyer, “Inclusions in Diamond,” in Mantle Xenoliths, Ed. by P. H. Nixon (Wiley, New York, 1987), pp. 501–522.

    Google Scholar 

  4. L. A. Taylor and M. Anand, “Diamonds: Time Capsules from the Siberian Mantle,” Chem. Erde 64, 1–74 (2004).

    Article  Google Scholar 

  5. B. H. Scott Smith, R. U. Danchin, J. W. Harris, and K. J. Stracke, “Kimberlites near Orroroo, South Australia,” in Kimberlites I: Kimberlites and Related Rocks, Ed. by J. Kornprobst (Elsevier, Amsterdam, 1984), pp. 121–142.

    Google Scholar 

  6. B. Harte and J. W. Harris, “Lower Mantle Associations Preserved in Diamonds,” Mineral. Mag. 58A, 384–385 (1994).

    Article  Google Scholar 

  7. P. C. Hayman, M. G. Kopylova, and F. V. Kaminsky, “Lower Mantle Diamonds from Rio Soriso (Juina Area, Mato Grosso, Brazil),” Contrib. Mineral. Petrol. 149, 430–445 (2005).

    Article  Google Scholar 

  8. T. Stachel, G. P. Brey, and J. W. Harris, “Kankan Diamonds (Guinea) I: from the Lithosphere down to the Transition Zone,” Contib. Mineral. Petrol. 140, 1–15 (2000).

    Article  Google Scholar 

  9. T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan Diamonds (Guinea) II: Lower Mantle Inclusion Parageneses,” Contib. Mineral. Petrol. 140, 16–27 (2000).

    Article  Google Scholar 

  10. R. M. Davies, W. L. Griffin, and S. Y. O’Reilly, “Diamonds from the Deep: Pipe DO27, Slave Craton, Canada,” in Proc. 7th Intern. Kimb. Conf, Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Cape Town, Red Roof Design, 1999), Vol. 1, pp. 148–155.

    Google Scholar 

  11. R. M. Davies, W. L. Griffin, S. Y. O’Reilly, and T. E. McCandless, “Inclusions in Diamonds from the K14 and K10 Kimberlites, Buffalo Hills, Alberta, Canada: Diamond Growth in a Plume?,” Lithos. 77, 99–111 (2004).

    Article  Google Scholar 

  12. N. P. Pokhilenko, N. V. Sobolev, V. N. Reutsky, et al., “Crystalline Inclusions and C Isotope Ratios in Diamonds from the Snap Lake/King Lake Kimberlite Dyke System: Evidence of Ultradeep and Enriched Lithospheric Mantle,” Lithos 77, 57–67 (2004).

    Article  Google Scholar 

  13. R. O. Moore and J. J. Gurney, “Pyroxene Solid Solution in Garnets Included in Diamonds,” Nature 318, 553–555 (1985).

    Article  Google Scholar 

  14. B. Harte and N. Cayzer, “Decompression and Unimixing of Crystals Included in Diamonds from the Mantle Transition Zone,” Phys. Chem. Minerals 34, 647–656 (2007).

    Article  Google Scholar 

  15. W. Wang, S. Sueno, E. Takahashi, et al., “Enrichment Processes at the Base of the Archean Lithospheric Mantle: Observations from Trace-Element Characteristics of Pyropic Garnet Inclusions in Diamond,” Contrib. Mineral. Petrol. 139, 720–733 (2000).

    Article  Google Scholar 

  16. P. Deines, J. W. Harris, and J. J. Gurney, “The Carbon Isotopic Composition and Nitrogen Content of Lithospheric and Asthenospheric Diamonds from the Jagersfontein and Koffiefontein Kimberlite, South Africa,” Geochim. Cosmochim. Acta 55, 2615–2625 (1991).

    Article  Google Scholar 

  17. N. M. McKenna, J. J. Gurney, J. Klump, and J. M. Davidson, “Aspects of Diamond Mineralisation and Distribution at the Helam Mine, South Africa,” Lithos 77, 193–208 (2004).

    Article  Google Scholar 

  18. M. T. Hutchison, Constitution of Deep Transition Zone and Lower Mantle Shown by Diamonds and Their Inclusions Unpublished PhD Thesis (University of Edinburgh, 1997), Vol. 1.

  19. N. V. Sobolev, E. S. Efimova, L. F. Reimers, et al., “Mineral Inclusions in the Diamonds of the Arkhangel’sk Kimebrlite Province,” Geol. Geofiz. 38(2), 358–370 (1997).

    Google Scholar 

  20. N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, et al., “Mineral Inclusions in Microdiamonds and Macrodiamonds from Kimberlites of Yakutia: A Comparative Study,” Lithos 77, 225–242 (2004).

    Article  Google Scholar 

  21. R. O. Moore and J. J. Gurney, “Mineral Inclusions in Diamond from the Monastery Kimberlite, South Africa,” in Kimberlites and Related Rocks, Ed. by J. Ross (Blackwell Sci. Publ., Melbourne, 1989), pp. 1029–1041.

    Google Scholar 

  22. T. Stachel, “Diamonds from the Asthenosphere and the Transition Zone,” Eur. J. Mineral. 13, 883–892 (2001).

    Article  Google Scholar 

  23. B. Harte, J. W. Harris, M. T. Hutchinson, G. R. Watt, and M. C. Wilding, “Lower Mantle Mineral Associations in Diamonds from Sao Luiz, Brazil,” in Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, Ed. by Y. Fei, C. M. Bertka, and B. O. Mysen (Geochemical Society, Houston, 1999), pp. 125–153.

    Google Scholar 

  24. F. V. Kaminsky, O. D. Zakharchenko, R. Davies, et al., “Superdeep Diamonds from the Juina Area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).

    Google Scholar 

  25. M. Akaogi and A. Akimoto, “Pyroxene-Garnet Solid-Solution Equilibria in the Systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at High Pressures and Temperatures,” Phys. Earth Planet. Inter. 15, 90–106 (1977).

    Article  Google Scholar 

  26. T. Gasparik, “Transformation of Enstatite-Diopside-Jadeite Pyroxenes to Garnet,” Contrib. Mineral. Petrol. 102, 389–405 (1989).

    Article  Google Scholar 

  27. T. Gasparik, “Enstatite-Jadeite Join and Its Role in the Earth’s Mantle,” Contrib. Mineral. Petrol. 111, 283–298 (1992).

    Article  Google Scholar 

  28. T. Gasparik, “Diopside-Jadeite Join at 16–22 GPa,” Phys. Chem. Minerals 23, 476–486 (1996).

    Article  Google Scholar 

  29. T. Gasparik, “Experimental Investigations of the Origin of Majoritic Garnet Inclusions in Diamonds,” Phys. Chem. Miner. 29, 170–180 (2002).

    Article  Google Scholar 

  30. T. Irifune, T. Sekine, A. E. Ringwood, and W. O. Hibberson, “The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implications,” Geotektonika 77, 245–256 (1986).

    Google Scholar 

  31. T. Irifune, “An Experimental Investigation of the Pyroxene-Garnet Transformation in a Pyrolite Composition and Its Bearing on the Constitution of the Mantle,” Phys. Earth Planet. Inter. 45, 324–336 (1987).

    Article  Google Scholar 

  32. K. D. Litasov and E. Ohtani, “Phase Relations in Hydrous MORB at 18–28 GPa: Implications for Heterogeneity of the Lower Mantle,” Phys. Earth Planet. Inter. 150, 239–263 (2005).

    Article  Google Scholar 

  33. S. Ono and A. Yasuda, “Compositional Change of Majoritic Garnet in a MORB Composition from 7 to 17 GPa and 1400 to 1600 Degrees C,” Phys. Earth Planet. Inter. 96, 171–179 (1996).

    Article  Google Scholar 

  34. M. Akaogi and S. Akimoto, “High Pressure Phase Equilibria in a Garnet Lherzolite, with Special Reference to Mg2+-Fe2+ Partitioning among Constituent Minerals,” Phys. Earth Planet. Inter. 19, 31–51 (1979).

    Article  Google Scholar 

  35. A. E. Ringwood and A. Major, “Synthesis of Majorite and Other High Pressure Garnets and Perovskites,” Earth Planet. Sci. Lett. 12, 411–418 (1971).

    Article  Google Scholar 

  36. M. C. Wilding, A Study of Diamonds with Syngenetic Inclusions, Unpublished PhD Thesis (University of Edinburgh, Edinburgh, 1990).

    Google Scholar 

  37. T. Stachel, J. W. Harris, and G. P. Brey, “REE Patterns of Peridotitic and Eclogitic Inclusions in Diamonds from Mwadui (Tanzania),” in Proc. 7th Intern. Kimb. Conf., Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Cape Town, Red Roof Design, 1999), Vol. 2, pp. 829–835.

    Google Scholar 

  38. D. D. Badyukov, “High-Pressure Phases in Impactites of the Zhamanshin Crater (USSR),” in Proc. 16th Lunar Planet. Sci. Conf. (Lunar Planet. Sci. Inst., Houston, 1985), pp. 21–22.

    Google Scholar 

  39. N. V. Sobolev, E. S. Yefimova, and V. I. Koptil, “Mineral Inclusions in Diamonds in the Northeast of the Yakutian Diamondiferous Province,” in Proc. 7th Intern. Kimb. Conf., Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Red Roof Design, Cape Town, 1999), Vol. 2, pp. 816–822.

    Google Scholar 

  40. N. V. Sobolev and Ju. G. Lavrent’ev, “Isomorphic Sodium Admixture in Garnets Formed at High Pressures,” Contib. Mineral. Petrol. 31, 1–12 (1971).

    Article  Google Scholar 

  41. T. E. McCandless and J. J. Gurney, “Sodium in Garnet and Potassium in Clinopyroxene: Criteria for Classifying Mantle Eclogites,” in Kimberlites and Related Rocks, Ed. by J. Ross (Blackwell Sci., Melbourne, 1989), pp. 827–832.

    Google Scholar 

  42. F. C. Bishop, J. V. Smith, and J. B. Dawson, “Na, K, P and Ti in Garnet, Pyroxene and Olivine from Peridotite and Eclogite Xenoliths from African Kimberlites,” Lithos 11, 155–173 (1978).

    Article  Google Scholar 

  43. R. N. Thompson, “Is Upper Mantle Phosphorus Contained in Sodic Garnet?,” Earth Planet. Sci. Lett. 26, 417–424 (1975).

    Article  Google Scholar 

  44. S. E. Haggerty and V. Sautter, “Ultra-Deep (>300 km) Ultramafic, Upper Mantle Xenoliths,” Science 248, 993–996 (1990).

    Article  Google Scholar 

  45. Yu. A. Litvin, Physicochemical Studies of Melting of Earth’s Deep Materials (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  46. A. V. Bobrov, Yu. A. Litvin, L. Bindi, and A. M. Dymshits, “Phase Relations and Formation of Sodium-Rich Majoritic Garnet in the System Mg3Al2Si3O12-Na2MgSi5O12 at 7.0 and 8.5 GPa,” Contrib. Mineral. Petrol. 156, 243–257 (2008).

    Article  Google Scholar 

  47. C. G. Homan, “Phase Diagram of Bi up to 140 kbars,” J. Phys. Chem. Solids 36, 1249–1254 (1975).

    Article  Google Scholar 

  48. C. S. Kennedy and G. C. Kennedy, “The Equilibrium Boundary between Graphite and Diamond,” J. Geophys. Res. 81, 2467–2470 (1976).

    Article  Google Scholar 

  49. A. V. Spivak and Yu. A. Litvin, “Diamond Synthesis in Multicomponent Carbonate-Carbon Melts of Natural Chemistry: Elementary Process and Properties,” Diamond Relat. Mater. 13, 482–487 (2004).

    Article  Google Scholar 

  50. A. V. Bobrov and Yu. A. Litvin, “Experimental Study of the Mg3Al2Si3O12-Na2MgSi5O12 System at 7.0 and 8.5 GPa: Implication for the Formation of Na-Bearing Garnets,” Dokl. Akad. Nauk 419(2), 242–246 (2007) [Dokl. Earth Sci. 419, 339–342 (2008)].

    Google Scholar 

  51. V. S. Sobolev and A. V. Sobolev, “Composition of Deep-Seated Pyroxenes and Problem of Eclogite Barrier,” Geol. Geofiz., No. 12, 46–59 (1977).

  52. N. V. Sobolev, I. K. Kuznetsova, and N. I. Zyuzin, “The Petrology of Grospydite Xenoliths from the Zagadochnaya Kimberlite Pipe in Yakutia,” J. Petrol. 9, 253–280 (1968).

    Google Scholar 

  53. A. V. Bobrov and Yu. A. Litvin, “Formation of Diamond in the Peridotite-Carbonate-Carbon Melts at 7.0–8.5 GPa: Concentration Barrier of Nucleation and Syngenesis of Silicate Inclusions,” Vestn. Otd. Nauk Zemle RAN, No. 1 (25) (2007). URL: http://www.scgis.ru/Russian/cp1251/h_dgggms/1-2007/Informbul-1_2007/term-10.pdf.

  54. M. Schrauder and O. Navon, “Hydrous and Carbonatitic Mantle Fluids in Fibrous Diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58(2), 761–771 (1994).

    Article  Google Scholar 

  55. L. F. Dobrzhinetskaya, H. W. Green II, A. P. Renfro, et al., “Precipitation of Pyroxenes and Mg2SiO4 from Majoritic Garnet: Simulation of Peridotite Exhumation from Great Depth,” Terra Nova 16, 325–330 (2004).

    Article  Google Scholar 

  56. R. M. Hazen and L. W. Finger, “Crystal Structures and Compressibilities of Pyrope and Grossular to 60 kbar,” Am. Mineral. 63, 297–303 (1978).

    Google Scholar 

  57. O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon, “Fluid Inclusions in Diamonds from the Diavik Mine, Canada and the Evolution of Diamond-Forming Fluids,” Geochim. Cosmochim. Acta 71, 723–744 (2007).

    Article  Google Scholar 

  58. A. Johannsen, A Descriptive Petrography of the Igneous Rocks (University of Chicago Press, Chicago, 1931), Vol. 1, pp. 88–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Bobrov, A.M. Dymshits, Yu.A. Litvin, 2009, published in Geokhimiya, 2009, No. 10, pp. 1011–1026.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrov, A.V., Dymshits, A.M. & Litvin, Y.A. Conditions of magmatic crystallization of Na-bearing majoritic garnets in the earth mantle: Evidence from experimental and natural data. Geochem. Int. 47, 951–965 (2009). https://doi.org/10.1134/S0016702909100012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909100012

Keywords

Navigation