Skip to main content
Log in

Tendencies in the distribution and hypotheses of the genesis of condensed naphthides in magmatic rocks from various geodynamic environments

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Literature data suggest that concentrated naphthides (CN)—bitumen and oil—can occur in intrusive and volcanic rocks of various silicity and alkalinity whose age ranges from the Proterozoic to Recent. The qualitative composition of heavy (high-molecular) hydrocarbons (HHC) in CN is the same in various rocks: heavy alkanes, polycyclic aromatic hydrocarbons (PAH), oxygen-bearing derivatives of hydrocarbons, etc. The presence of CN in rock-forming minerals in magmatic rocks and pegmatites confirms that CN condensed during the epimagmatic stage, and the molecular mass of the CN, for example, in the Khibina alkaline massif decreased with decreasing temperature simultaneously with the evolution of its mineral assemblages. The synthesis of CN continues during the hydrothermal stage, but high-temperature associations of HHC gave way during this stage to low-temperature ones. During all evolutionary stages of magmatic and related processes, the contents of CN are correlated with those of trace elements, which likely occur as organoelement compounds (OEC). Hypotheses of endogenic and exogenic genesis of CN in magmatic rocks are discussed. The endogenic hypotheses include HHC synthesis from inorganic gases and light hydrocarbons (HC) on catalytic minerals. The fact that HHC and CN occur in mantle xenoliths and high-pressure minerals and the results of experimental and thermodynamic modeling are discussed as supporting the hypothesis of the mantle genesis of CN in magmatic rocks. The metastable ascent of gaseous HHC, the low oxygen fugacity, and the high alkalinity of the melts could be favorable for the partial preservation of HHC in these rocks at crustal depth levels. Endogenic CN can serve as a nutrient medium for microorganisms in the upper lithosphere. Exogenic hypotheses for the genesis of HHC in magmatic rocks assume that the melts should have assimilated sedimentary rocks rich in organic matter and that biogenic oil could be transported from sedimentary reservoirs to magmatic rocks. An important role in determining the genesis of CN in magmatic rocks is played by endogenic and biogenic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Shteinberg and M. V. Lagutina, Carbon in Ultrabasic and Basic Rocks (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  2. N. L. Dobretsov, E. G. Konnikov, V. N. Medvedev, and E. V. Sklyarov, “Ophiolites and Olistostromes of the Eastern Sayan,” in Riphean-Lower Paleozoic Ophiolites of Northern Eurasia (Nauka, Novosibirsk, 1985), pp. 34–58 [in Russian].

    Google Scholar 

  3. A. B. Kuz’michev, Tectonic Evolution of the Tuva-Mongolia Massif: Early and Late Baikalian and Early Caledonian Stages (Probel, Moscow, 2004) [in Russian].

    Google Scholar 

  4. M. F. Shestopalov, “Ultrabasic Massif of the Kitoy Alps in the Eastern Sayan and Related Deposits,” Tr. Tsentr. Nauch.-Issled. Laboratorii Kamnei-Samotsvetov (Gostrest Russkie Samotsvety), No. 4, 84–100 (1938).

  5. Yu. V. Danilova and B. S. Danilov, “Carbon-Bearing Mineralization in Tectonites of the Ospino-Kitoi Massif (Eastern Sayany, Russia),” Geol. Rudn. Mestorozhd 43(1), 71–82 (2001) [Geol. Ore Dep. 43 (1), 64–75 (2001)].

    Google Scholar 

  6. S. M. Zhmodik, A. G. Mironov, L. V. Agafonov, et al., “Carbonization of Hyperbasites of the Eastern Sayan and Gold-Palladium-Platinum Mineralization,” Geol. Geofiz. 45(2), 228–243 (2004).

    Google Scholar 

  7. A. F. Korzhinskii, Hydrotehramlly Altered Rocks of Rare-Metal Deposits of East Siberia (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  8. E. M. Galimov, A. G. Mironov, and S. M. Zhmodik, “Nature of Carbonization in the Carbon-Rich Rocks of the Eastern Sayan,” Geokhimiya, No. 4, 355–360 (2000) [Geochem. Int. 38, 317–322 (2000)].

  9. F. A. Letnikov, V. B. Savel’eva, Yu. V. Anikina, and M. M. Smagunova, “High-Carbon Tectonites as a New Source of Gold and Platinum,” Dokl. Akad. Nauk 347(6), 795–798 (1996) [Dokl. Earth Sci. 347, 509–512 (1996)].

    Google Scholar 

  10. V. B. Savel’eva, N. G. Zvonkova, and Yu. V. Anikina, “High-Carbon Tectonites of the Ospa-Kitoi Hyperbasite Massif (Eastern Sayan),” Geol. Geofiz. 39(5), 598–610 (1998).

    Google Scholar 

  11. V. B. Savel’eva, Yu. V. Danilova, B. S. Danilov, et al., “Geochemistry of High-Carbon Metasomatites of the Ospa-Kitoi Hyperbasite Massif (Eastern Sayan),” Geol. Geofiz. 45(12), 1434–1440 (2004).

    Google Scholar 

  12. R. P. Gottikh, B. I. Pisotskii, and D. Z. Zhuravlev, “Trace Element Distribution in the Kimberlite-Bitumen and Basalt-Bitumen Systems in Diatremes of the Siberian Craton,” Dokl. Akad. Nauk 399(3), 373–377 (2004) [Dokl. Earth Sci. 399, 1222–1226 (2004)].

    Google Scholar 

  13. B. I. Pisotskii, R. P. Gottikh, B. D. Vasil’ev, and D. Z. Zhuravlev, “Genetic Aspects of the Formation of Carbonaceous Substances in the Minusa Basin,” Dokl. Akad. Nauk 410(6), 804–808 (2006) [Dokl. Earth Sci. 411, 1272–1276 (2006)].

    Google Scholar 

  14. R. P. Gottikh, B. I. Pisotskii, and I. I. Kulakova, “Geochemistry of Reduced Fluids from Alkaline Igneous Rocks of the Khibiny Pluton,” Dokl. Akad. Nauk 407(1), 82–87 (2006) [Dokl. Earth Sci. 407, 298–303 (2006)].

    Google Scholar 

  15. V. A. Koroteev and V. N. Sazonov, Geodynamics, Ore Genesis, and Prediction: An Example of the Urals (Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  16. G. N. Savel’eva, P. V. Suslov, A. N. Larionov, and N. G. Berezhnaya, “Age of Zircons from Chromites in the Residual Ophiolitic Rocks as a Reflection of Upper Mantle Magmatic Events,” Dokl. Akad. Nauk 411(3), 384–389 (2006) [Dokl. Earth Sci. 411, 1401–1406 (2006)].

    Google Scholar 

  17. R. Sugisaki and K. Mimura, “Mantle Hydrocarbons: Abiotic or Biotic?,” Geochim. Cosmochim. Acta 58(11), 2527–2542 (1994).

    Article  Google Scholar 

  18. O. K. Ivanov, Concentrically Zoned Pyroxenite Dunite Massifs of the Urals: Mineralogy, Petrology, and Genesis (Ural. Univ., Yekaterinburg, 1997) [in Russian].

    Google Scholar 

  19. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of the Lithospheric Plates (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  20. L. V. Agafonov, O. L. Bannikov, and T. A. Andreeva, “Composition of the Gas Phase of Hyperbasites versus Their Chemistry and Genesis,” in Proceedings on Genetic and Experimental Mineralogy (Nauka, Novosibirsk, 1976), Vol. 10, pp. 64–74 [in Russian].

    Google Scholar 

  21. E. K. Markhinin, Volcanoes and Life (Problems of Biovolcanology) (Mysl’, Moscow, 1980) [in Russian].

    Google Scholar 

  22. N. S. Beskrovnyi, Oil Bitumen and Hydrocarbon Gases as Byproducts of Hydrothermal Activity (Nedra, Leningrad, 1967) [in Russian].

    Google Scholar 

  23. N. S. Beskrovnyi, “Oil and Gas Potential and Magmatism,” in Features of Deep-Seated Structure of the Earthís Crust and Theoretical Background of Inorganic Oil Synthesis (Naukova dumka, Kiev, 1982), pp. 254–293 [in Russian].

    Google Scholar 

  24. I. S. Gol’dberg, “On Tendencies in the Distribution of Bitumen Shows in the Northern Part of the Tungusska Syneclise,” (Gostoptekhizdat, Leningrad, 1961) [in Russian].

    Google Scholar 

  25. G. S. Fedoseev, V. P. Fadeeva, and V. N. Melenevskii, “Veined Pyrobitumens in the Dolerites of the Kuz’menskii Complex (Minusinsk Intermontane Trough),” Geol. Geofiz. 42(7), 1110–1117 (2001).

    Google Scholar 

  26. E. M. Galimov and I. A. Petersil’e, “Carbon Isotopic Composition of Bitumen in Igneous and Metamorphic Rocks,” Dokl. Akad. Nauk SSSR 182(1), 186–189 (1968).

    Google Scholar 

  27. I. A. Petersilie and H. Sorensen, “Hydrocarbon Gases and Bituminous Substances in Rocks from the Ilimaussaq Alkaline Intrusion, South Greenland,” Lithos 3, 59–76 (1970).

    Article  Google Scholar 

  28. I. J. Bear and R. G. Thomas, “Genesis of Petrichor,” Geochim. Cosmochim. Acta 30(9), 869–879 (1966).

    Article  Google Scholar 

  29. Yu. I. Pikovskii, T. G. Chernova, T. A. Alekseeva, and Z. I. Verkhovskaya, “Composition and Nature of Hydrocarbons in Modern Serpentinization Areas in the Ocean,” Geokhimiya, No. 10, 1106–1112 (2004) [Geochem. Int. 42, 971–976 (2004)].

  30. O. E. Kawka and B. R. T. Simoneit, “Polycyclic Aromatic Hydrocarbons in the Hydrothermal Petroleum from the Guaymas Basin Spreading System,” Appl. Geochem. 5(1–2), 17–27 (1990).

    Article  Google Scholar 

  31. G. P. Vdovykin and L. V. Dmitriev, “Organic Matter in the Ultrabasic Rocks of the Indian Ocean Ridge,” Geokhimiya, No. 8, 992–994 (1968).

  32. S. P. Jakobsson and G. O. Fridleifsson, “Asphaltic Petroleum in Amygdales in Skyndidalur, Lon, SE Iceland,” Natturufraedingurinn 59(4), 169–188 (1990).

    Google Scholar 

  33. A. R. Geptner, T. A. Alekseeva, and Yu. I. Pikovskii, “Polycyclic Aromatic Hydrocarbons in the Unaltered and Hydrothermally Altered Volcanics of Iceland,” Dokl. Akad. Nauk 369(5), 667–670 (1999) [Dokl. Earth Sci. 369, 1352–1355 (1999)].

    Google Scholar 

  34. N. N. Shepeleva, A. I. Ogloblina, and Yu. I. Pikovskii, “Polycyclic Aromatic Hydrocarbons in the Carbonaceous Matter of the Daldyn-Alakit Terrain of the Siberian Platform,” Geokhimiya, No. 5, 731–740 (1990).

  35. F. V. Kaminskii, I. I. Kulakova, and A. I. Ogloblina, “On Polycyclic Aromatic Hydrocarbons in Carbonado and Diamond,” Dokl. Akad. Nauk SSSR 283(4), 985–988 (1985).

    Google Scholar 

  36. Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils, Ed. by A. N. Gennadiev and Yu. I. Pikovskii (Mosk. Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  37. V. N. Florovskaya, F. Ya. Korytov, A. I. Ogloblina, and M. E. Ramenskaya, “Polycyclic Aromatic Hydrocarbons in Deep-Seated Xenolith (Lherzolite) and Basalts,” Dokl. Akad. Nauk SSSR 262(5), 1223–1225 (1982).

    Google Scholar 

  38. V. N. Florovskaya, T. A. Teplitskaya, E. K. Markhinin, and N. E. Podkletnov, “Polynuclear Arenes in the Products of Volcanic Eruptions,” Dokl. Akad. Nauk SSSR 240(1), 221–222 (1978).

    Google Scholar 

  39. S. F. Glavatskikh and N. V. Trubkin, “The First Find of Shungite in Exhalation Products of the Tolbachik Great Fissure Eruption, Kamchatka,” Dokl. Akad. Nauk 371(5), 655–658 (2000) [Dokl. Earth Sci. 371, 458–461 (2000)].

    Google Scholar 

  40. V. A. Isidorov, I. G. Zenkevich, and G. A. Karpov, “Volatile Organic Compounds in the Vapor-Gas Vents of Some Volcanoes and Hydrothermal Systems of Kamchatka,” Vulkanol. Seismol., No. 3, 19–25 (1991).

  41. N. A. Kudryavtsev, Oil, Gas, and Solid Bitumen in Igneous and Metamorphic Rocks (Gostoptekhizdat, Leningrad, 1959) [in Russian].

    Google Scholar 

  42. A. I. Botkunov, V. K. Garanin, A. N. Krot, et al., “Primary Hydrocarbon Inclusions in Garnets from Mir and Sputnik Kimberlite Pipes,” Dokl. Akad. Nauk SSSR 280(2), 468–473 (1985).

    Google Scholar 

  43. E. M. Galimov, A. I. Botkunov, L. A. Bannikova, et al., “Carbon Isotopic Composition of Gas and Bitumoid from Gas-Liquid Inclusions in Garnet from the Mir Kimberlite Pipe,” Dokl. Akad. Nauk SSSR 301(2), 436–437 (1988).

    Google Scholar 

  44. A. A. Giardini, C. E. Melton, and R. S. Mitchell, “The Nature of the Upper 400 km of the Earth and Its Potential as a Source for Non-Biogenic Petroleum,” J. Petrol. Geol. 5(2), 173–189 (1982).

    Article  Google Scholar 

  45. I. I. Kulakova, A. I. Ogloblina, A. P. Rudenko, et al., “Polycyclic Aromatic Hydrocarbons in Diamond-Associated Minerals and Possible Mechanisms of Their Formation,” Dokl. Akad. Nauk SSSR 267(6), 1458–1461 (1982).

    Google Scholar 

  46. A. E. Vorontsov, E. A. Razvozzhaeva, E. D. Syngaevskii, and A. A. Khlebnikova, “Geochemical Features of Carbonaceous Matters from Diatremes of the Siberian Platform,” Geokhimiya, No. 2, 226–235 (1986).

  47. V. S. Zubkov, “Postmagmatic Hypothesis of Naphthide Genesis in the Kimberlite Pipes of the Siberian Platform,” Otechestvennaya Geol., No. 6, 45–51 (2006).

  48. O. V. Serebrennikova, B. D. Vasil’ev, Yu. P. Turov, and T. Yu. Filippova, “Naphthides in Lower Devonian Basalts in the North Minusinsk Depression,” Dokl. Akad. Nauk 390(4), 525–527 (2003) [Dokl. Earth. Sci. 390, 604–606 (2003)].

    Google Scholar 

  49. E. D. Andreeva, V. A. Kononova, E. V. Sveshnikova, and R. M. Yashina, Magmatic Rocks (Nauka, Moscow, 1984), Vol. 2 [in Russian].

    Google Scholar 

  50. U. Kramm, L. N. Kogarko, V. A. Kononova, and H. Vartiainen, “The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr Ages Define 380–360 Ma Age Range for All Magmatism,” Lithos 30, 33–44 (1993).

    Article  Google Scholar 

  51. A. A. Arzamastsev, L. V. Arzamastseva, V. N. Glaznev, and A. B. Raevskii, “Petrologic-Geophysical Model for the Structure and Composition of Deep Levels of the Khibina and Lovozero Complexes, Kola Peninsula,” Petrologiya 6(5), 478–496 (1998) [Petrology 6, 434–450 (1998)].

    Google Scholar 

  52. V. N. Florovskaya, R. B. Zezin, L. I. Ovchinnikova, et al., Diagnostics of Organic Matter in the Rocks and Minerals of Magmatic and Hydrothermal Origin (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  53. S. V. Ikorskii, Organic Matter in the Minerals of Igneous Rocks (by the Example of the Khibiny Alkaline Massif) (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  54. I. A. Petersil’e, Geology and Geochemistry of Natural Gases in the Dispersed Bitumen of Some Geological Formations of the Kola Peninsula (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  55. M. A. Pavlova, “New Data on Composition of Dispersed Bitumen in the Rocks of the Khibiny Massif,” in Proceedings on Geology and Metallogeny of the Kola Peninsula (Kol’skii filial AN SSSR, Apatity, 1971), Vyp. 2, pp. 256–270 [in Russian].

    Google Scholar 

  56. R. B. Zezin and M. N. Sokolova, “Macro-Occurrences of Carbonaceous Matter in Hydrothermal Rocks from the Khibiny Massif,” Dokl. Akad. Nauk SSSR 177(4), 921–924 (1967).

    Google Scholar 

  57. N. V. Chukanov, I. V. Pekov, S. V. Sokolov, et al., “On the Problem of the Formation and Geochemical Role of Bituminous Matter in Pegmatites of the Khibiny and Lovozero Alkaline Massifs, Kola Peninsula, Russia,” Geokhimiya, No. 7, 774–789 (2006) [Geochem. Int. 44, 715–728 (2006)].

  58. A. M. Sazonov, V. V. Vrublevsky, I. F. Gertner, et al., “The Transangara Alkaline Pluton, Yenisei Range: Rb-Sr and Sm-Nd Isotope Ages and Sources of Feldspathoid Magmas in Late Precambrian,” Dokl. Akad. Nauk 413(6), 798–802 (2007) [Dokl. Earth Sci. 413, 469–473 (2007)].

    Google Scholar 

  59. E. A. Mathez, “Carbonaceous Matter in Mantle Xenoliths: Composition and Relevance to the Isotopes,” Geochim. Cosmochim. Acta 51(9), 2339–2347 (1987).

    Article  Google Scholar 

  60. T. N. Tingle, E. A. Mathez, and M. F. Hochella, Jr. “Carbonaceous Matter in Peridotites and Basalts Studied by XPS, SALI, and LEED,” 55(5), 1345–1352 (1991).

    Google Scholar 

  61. V. S. Zubkov, Yu. A. Pakhol’chenko, G. P. Sandimirova, et al., “Rubidium-Strontium Age and Genesis of Alkaline Olivine Basalts of the Minusinsk Depressions,” Dokl. Akad. Nauk SSSR 290(4), 960–963 (1986).

    Google Scholar 

  62. V. V. Yarmolyuk and V. I. Kovalenko, “Deep Geodynamics and Mantle Plumes: Their Role in the Formation of the Central Asian Fold Belt,” Petrologiya 11(6), 556–586 (2003) [Petrology 11, 504–531 (2003)].

    Google Scholar 

  63. K. Mimura, M. Kato, and R. Sugisaki, “Shock Synthesis of Polycyclic Aromatic Hydrocarbons from Benzene: Its Role in Astrophysical Processes,” Geophys. Rev. Lett. 21(18), 2071–2074 (1994).

    Article  Google Scholar 

  64. A. V. Korochantsev, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2004).

  65. V. S. Zubkov, “Composition and Speciation of Fluid in the System C-H-N-O-S at P-T Conditions of the Upper Mantle,” Geokhimiya, No. 2, 131–145 (2001) [Geochem. Int. 39, 109–122 (2001)].

  66. V. K. Karzhavin, “Hydrocarbon Gases of the Khibiny Massif and its Relation with Alkaline Components of Minerals and Rocks,” in Alkaline Rocks of the Kola Peninsula (Nauka, Leningrad, 1974), pp. 80–85 [in Russian].

    Google Scholar 

  67. A. A. Marakushev and S. A. Marakushev, “PT Facies of Elementary, Hydrocarbon, and Organic Substances in the C-H-O System,” Dokl. Akad. Nauk 406(4), 521–527 (2006) [Dokl. Earth Sci. 406, 141–147 (2006)].

    Google Scholar 

  68. A. A. Kadik, Yu. A. Litvin, V. V. Koltashev, et al., “Solubility of Hydrogen and Carbon in Reduced Magmas of the Early Earth’s Mantle,” Geokhimiya, No. 1, 38–53 (2006)[Geochem. Int. 44, 33–47 (2006)].

  69. Ya. M. Paushkin, Yu. P. Losev, and P. G. Anan’ev, “Suppression of Cracking of Low-Molecular (C7–C16) and High-Molecular Hydrocarbons (Polyolefins) by Alkaline Metals and their Hydroxides,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 6, 1276–1283 (1969).

  70. I. K. Karpov, V. S. Zubkov, A. N. Stepanov, et al., “Thermodynamic Criteria for Metastable Stage of Hydrocarbons in the Earth’s Crust and Upper Mantle,” Geol. Geofiz. 39(11), 1518–1528 (1998).

    Google Scholar 

  71. B. A. Mal’kov and G. N. Bobolovich, “Conditions of Formation of Kimberlites: Evidence from Fluid Inclusion Study in Calcite and Apatite,” Dokl. Akad. Nauk SSSR 234(2), 436–439 (1977).

    Google Scholar 

  72. N. A. Shilo, F. V. Kaminskii, S. A. Palandzhyan, et al., “First Finds of Diamonds in the Alpine-Type Ultrabasites of the Northeastern SSSR,” Dokl. Akad. Nauk SSSR 241(4), 933–936 (1978).

    Google Scholar 

  73. F. V. Kaminskii and V. I. Vaganov, “Petrological Prerequisites of the Diamond Potential of the Alpine-Type Ultrabasites,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 6, 35–47 (1976).

  74. R. Rid, Dzh. Prausnits, and T. Shervud, Properties of Gases and Liquids: A Textbook (Khimiya, Leningrad, 1982) [in Russian].

    Google Scholar 

  75. V. S. Balitskii, V. Yu. Prokof’ev, L. V. Balitskaya, et al., “Experimental Study of the Interaction of Mineral-Forming Hydrothermal Solutions with Oil and Their Joint Migration,” Petrologiya 15(3), 227–240 (2007) [Petrology 15, 211–223 (2007)].

    Google Scholar 

  76. Yu. A. Taran, F. I. Novak, I. A. Antoshchuk, and A. N. Bashkirov, “Catalytic Properties of Volcanogenic Rocks in the Synthesis of Hydrocarbons from Carbon Oxide and Hydrogen,” Dokl. Akad. Nauk SSSR 257(5), 1158–1161 (1981).

    Google Scholar 

  77. V. S. Savel’ev, A. I. Ogloblina, V. N. Florovskaya, et al., “Polycondensation of Carbon Oxide with Hydrogen as Possible Source of Polycyclic Aromatic Hydrocarbons,” Dokl. Akad. Nauk SSSR 275(3), 733–736 (1984).

    Google Scholar 

  78. J. F. Kenney, “Comment on “Mantle Hydrocarbons: Abiotic or Biotic?” by R. Sugisaki and K. Mimura,” Geochim. Cosmochim. Acta 59(18), 3857–3858 (1995).

    Article  Google Scholar 

  79. R. Sugisaki and K. Mimura, “Reply to Comment by J.F. Kenney on “Mantle Hydrocarbons: Abiotic or Biotic?”,” Geochim. Cosmochim. Acta 59(18), 3859–3861 (1995).

    Article  Google Scholar 

  80. U. Kramm and L. N. Kogarko, “Nd and Sr Isotope Signatures of the Khibina and Lovozero Agpaitic Centres, Kola Alkaline Province, Russia,” Lithos 32, 225–242 (1994).

    Article  Google Scholar 

  81. Yu. A. Borshchevskii, S. L. Borisova, N. I. Medvedovskaya, et al., “Isotopic Features of Minerals and Rocks of the Khibiny-Lovozero Complex and Some Aspects of Their Genesis,” Zap. Vses. Mineral. O-va, No. 5, 532–540 (1987).

  82. V. A. Nivin, A. L. Devirts, and E. P. Lagutina, “On the Nature of Gas Phase of the Lovozero Massif Based on Hydrogen Isotope Composition,” Geokhimiya, No. 12, 1787–1793 (1994).

  83. F. P. Mitrofanov, S. V. Ikorskii, and I. L. Kaminskii, “Ne Isotopes in the Paleozoic Alkaline Intrusions of the Kola Peninsula and North Karelia,” Dokl. Akad. Nauk 345(2), 243–246 (1995).

    Google Scholar 

  84. A. F. Safronov, N. N. Zinchuk, V. A. Kashirtsev, et al., “Naphthide Occurrences in the Kimberlite Pipes and Host Rocks of the Yakutian Diamondiferous Province,” Geol. Geofiz. 46(2), 151–159 (2005).

    Google Scholar 

  85. A. Rieger, L. Schwark, M.-E. Cisternas, and H. Miller, “Genesis and Evolution of Bitumen in Lower Cretaceous Lavas and Implications for Strata-Bound Copper Deposits, North Chile,” Econ. Geol. 103, 387–404 (2008).

    Article  Google Scholar 

  86. A. Dutkiewicz, H. Volk, J. Ridley, and S. C. George, “Geochemistry of Oil in Fluid Inclusions in Middle Proterozoic Igneous Intrusion: Implications for the Source of Hydrocarbons in Crystalline Rocks,” Org. Geochim 35(8), 937–957 (2004).

    Article  Google Scholar 

  87. H. Volk, S. C. George, A. Dutkiewicz, and J. Ridley, “Characterisation of Fluid Inclusion Oil in a Mid-Proterozoic Sandstone and Dolerite (Roper Superbasin, Australia),” Chem. Geol. 223(1–3), 109–135 (2005).

    Article  Google Scholar 

  88. A. E. Kontorovich, “Evolution of Naphthide Genesis in the Earth’s Evolution,” Geol. Geofiz. 45(7), 784–802 (2004).

    Google Scholar 

  89. G. P. Vdovykin, “Organic Compounds in the Meteorites—Early Matter of the Solar System,” in Earth Degassing and Genesis of Hydrocarbon Fluids and Deposits (GEOS, Moscow, 2002), pp. 60–73 [in Russian].

    Google Scholar 

  90. Y. V. Kissin, “Hydrocarbon Components in Carbonaceous Meteorites,” Geochim. Cosmochim. Acta 67(9), 1723–1735 (2003).

    Article  Google Scholar 

  91. S. Pizzarello and Huang Yong-Song, “The Deuterium Enrichment of Individual Amino in Carbonaceous Meteorites: A Case for Presolar Distribution of Biomolecule Precursors,” Geochim. Cosmochim. Acta 69(3), 599–605 (2005).

    Article  Google Scholar 

  92. Y. Wang, Huang Yong-Song, C. M. D. O’Alexander, M. Fogel, and G. Cody, “Molecular and Compound-Specific Hydrogen Isotope Analyses of Insoluble Organ Matter from Different Carbonaceous Chondrite Groups,” Geochim. Cosmochim. Acta 69(14), 3711–3721 (2005).

    Article  Google Scholar 

  93. D. S. Glyuk, Experimental Study of Gold-Bearing Aqueous-Silicate Systems (VO “Nauka”, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  94. V. V. Reverdatto and V. N. Melenevskii, “Influence of Magmatic Heat on the Generation and Degeneration of Hydrocarbons near Intrusive Basite Bodies,” Dokl. Akad. Nauk SSSR 286(2), 409–411 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zubkov.

Additional information

Original Russian Text © V.S. Zubkov, 2009, published in Geokhimiya, 2009, No. 8, pp. 787–804.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubkov, V.S. Tendencies in the distribution and hypotheses of the genesis of condensed naphthides in magmatic rocks from various geodynamic environments. Geochem. Int. 47, 741–757 (2009). https://doi.org/10.1134/S0016702909080011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909080011

Keywords

Navigation