Skip to main content
Log in

Comparative analysis of the mineral and chemical compositions of black smoker smoke at the TAG and Broken Spur hydrothermal fields, mid-Atlantic ridge

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents newly obtained data on the fluxes of hydrothermal-sedimentary material collected with sedimentation traps within 3 m from the bottoms of black smokers at the TAG and Broken Spur hydrothermal fields and reports the results of comparative analysis of the mineralogical and chemical compositions of this material. The sedimentary material deposited near the vent was determined to account to approximately 3% of the overall mass of the orebody. The results demonstrate that, in both cases, the trap material is characterized by high contents of ore components and ore-forming chemical elements (Fe, Cu, Zn, and Co), and Se, As, Sb, Ba, and P compared to tholeiitic basalts from which these elements are leached. However, the material of a more “mature” (having an age of 40–50 ka) hydrothermal spring at the TAG field contains 40% Fe hydroxides, in contrast to the material of a spring at the Broken Spur field (age <1000 yr) whose material is dominated by sulfides (72%) and contains much pyrrhotite. These springs also show principal differences between the enrichment coefficients for Se (by a factor of 4.8), As (3), Ca (4.1), and Si (5.2). These differences are thought to reflect various evolutionary stages of the circulating hydrothermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Grichuk, E. E. Abramova, and A. V. Tutubalin, “A Thermodynamic Model of a Submarine Massive Sulfide Formation in a Convecting Hydrothermal System,” Geol. Rudn. Mestorozhd. 40(1), 3–19 (1998) [Geol. Ore Dep. 40, 1–15 (1998)].

    Google Scholar 

  2. A. P. Lisitsyn, “Hydrothermal Systems of the World Ocean: Input of Endogenous Material,” in Hydrothermal Systems and Sedimentary Formations of the Atlantic Mid-Ocean Ridges (Nauka, Moscow, 1993), pp. 147–245 [in Russian].

    Google Scholar 

  3. M. B. Borodaevskaya, D. I. Gorzhevskii, A. I. Krivtsov, et al., Sulfide Deposits around the World (Nedra, Moscow, 1979) [in Russian].

    Google Scholar 

  4. R. A. Feely, M. Lewison, G. J. Massoth, et al., “Composition and Dissolution of Black Smoker Particulate from Active Vents on the Juan de Fuca Ridge,” J. Geophys. Res. 90(B11), 11347–11363 (1987).

    Article  Google Scholar 

  5. R. A. Feely, G. J. Massoth, J. H. Trefry, et al., “Composition and Sedimentation of Hydrothermal Plume Particles from North Cleft Segment, Juan de Fuca Ridge,” J. Geophys. Res. 99(B3), 4985–5006 (1994).

    Article  Google Scholar 

  6. J. Dymond and S. Roth, “Plume Dispersed Hydrothermal Particles: A Time-Series Record of Settling Flux from the Endevor Ridge Using Moored Sensors,” Geochim. Cosmochim. Acta 52, 2525–2536 (1988).

    Article  Google Scholar 

  7. M. J. Mottl and T. E. McConachy, “Chemical Processes in Buoyant Hydrothermal Plumes on the East Pacific Rise Near 21°N,” Geochim. Cosmochim. Acta 54, 1911–1927 (1990).

    Article  Google Scholar 

  8. A. Khripounoff and P. Alberic, “Settling of Particles in a Hydrothermal Vent Field (East Pacific Rise 13°N) Measured with Sediment Traps,” Deep.-Sea Res. 38(6), 729–744 (1991).

    Article  Google Scholar 

  9. “BRAVEX-94 Scientific Team, BRAVEX-94: a Joint British-Russian Expedition to the Broken Spur and TAG Hydrothermal Vent Sites on the Mid-Atlantic Ridge,” BRIDGE Newsletter, No. 7, 6–9 (1994).

  10. V. N. Lukashin, V. Yu. Rusakov, A. P. Lisitzin, et al., “Study of Particle Fluxes in the Broken Spur Hydrothermal Vent Field (29°N, Mid-Atlantic Ridge),” Explor. Mining Geol. 8(3) (1999).

  11. V. N. Lukashin, V. Yu. Rusakov, A. P. Lisitsyn, et al., “Particle Fluxes, Mineralogy, and Chemistry of Sedimentary Material in the Broken Spur Hydrothermal Field, Mid-Atlantic Ridge, 29°N,” Geokhimiya, No. 4, 370–382 (2000) [Geochem. Int. 38, 331–342 (2000)].

  12. G. A. Cherkashev, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (St. Petersburg, 2004).

  13. R. W. Nesbitt and B. J. Murton, “Chimney Growth Rate and Metal Deposition at the Broken Spur Vent Field, 29°N, MAR: A Correction and Further Speculation,” BRIDGE Newsletter, No. 9, 38–41 (1995).

  14. Yu. A. Bogdanov, N. S. Bortnikov, and A. P. Lisitsyn, “The Origin of the Hydrothermal Sulfide Ores in the Axial Parts of the Mid-Atlantic Ridge,” Geol. Rudn. Mestorozhd. 39, 409–429 (1997) [Geol. Ore Dep. 39, 351–370 (1997)].

    Google Scholar 

  15. S. E. Humphris, P. M. Herzing, D. J. Miller, et al., “The Internal Structure of An Active Sea-Floor Massive Sulphide Deposit,” Nature 377, 713–716 (1995).

    Article  Google Scholar 

  16. C. Laloeu, G. Thompson, M. Arnold, et al., “Geochronology of TAG and Snake Pit Hydrothermal Fields, Mid-Atlantic Ridge: Witness to a Long and Complex Hydrothermal History,” Earth Planet. Sci. Lett. 97, 113–128 (1990).

    Article  Google Scholar 

  17. C. Laloeu, J. L. Reyss, E. Brichet, et al., “New Age Data for Mid-Atlantic Ridge Hydrothermal Site: TAG and Snake Pit Chronology Revisited,” J. Geophys. Res. 98, 9705–9713 (1993).

    Google Scholar 

  18. C. Laloeu, J. L. Reyss, E. Brichet, et al., “Hydrothermal Activity on 10-Years Scale at a Slow-Spreading Ridge, TAG Hydrothermal Field, Mid-Atlantic Ridge 26°N” J. Geophys. Res. 100(B9), 17855–17862 (1995).

    Article  Google Scholar 

  19. V. Yu. Rusakov, V. N. Lukashin, and A. A. Burovkin, “A Sediment Trap for Short-Term Studies of Vertical Particle Fluxes in the Ocean,” Okeanologiya 36, 798–800 (1996) [Oceanology 36, 754–756 (1996)].

    Google Scholar 

  20. B. J. Murton and C. Van Dover, ““Alvin” Dives on the Broken Spur Hydrothermal Vent Field at 29°10′N on the Mid-Atlantic Ridge,” BRIDGE Newsletter 5, 11–14 (1993).

    Google Scholar 

  21. G. Fischer and G. Wefer, “Sampling, Preparation and Analysis of Marine Particulate Matter,” in Marine Particles: Analysis and Characterization, Geophys. Monograph. 63, 391–397 (1991).

    Google Scholar 

  22. M. J. Murton, C. Van Dover, and E. Southward, “Geological Setting and Ecology of the Broken Spur Hydrothermal Vent Field: 29°10′N on the Mid-Atlantic Ridge,” in Hydrothermal Vents and Processes, Spec. Publ. Geol. Soc. London 87, 33–41 (1995).

    Google Scholar 

  23. J. M. Edmond, A. C. Campbell, M. P. Palmer, and C. German, “Geochemistry of Hydrothermal Fluids from the Mid-Atlantic Ridge: TAG and MARK,” EOS (AGU) 71, 1650–1651 (1990).

    Google Scholar 

  24. A. C. Campbell, M. R. Palmer, G. P. Klinkhammer, et al., “Chemistry of Hot Springs on the Mid-Atlantic Ridge,” Nature 335(6190), 514–519 (1988).

    Article  Google Scholar 

  25. K. L. von Damm, J. M. Edmond, B. Grant, et al., “Chemistry of Submarine Hydrothermal Solutions at 21°N, East Pacific Rise,” Geochim. Cosmochim. Acta 49(11), 2197–2220 (1985).

    Article  Google Scholar 

  26. R. Haymon and M. Kastner, “Hot Spring Deposits on the East Pacific Rise at 21°N: Preliminary Description of Mineralogy and Genesis,” Earth Planet. Sci. Lett. 53, 363–381 (1981).

    Article  Google Scholar 

  27. E. A. Romankevich, Geochemistry of Organic Matter in the Ocean (Springer-Verlag, Berlin-New York, 1984.

    Google Scholar 

  28. G. V. Voitkevich, A. V. Kokin, A. E. Miroshnikov, and V. G. Prokhorov, Reference Book on Geochemistry (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  29. Yu. A. Bogdanov, Hydrothermal Occurrences of Mid-Atlantic Ridge Rifts (Nauchnyi Mir, Moscow, 1997) [in Russian].

    Google Scholar 

  30. J. B. Butler and R. W. Nesbitt, “Hydrothermal Sulfides from the Broken Spur Vent Field, 29°10′N Mid-Atlantic Ridge: Preliminary Observations,” BRIDGE Newsletter, No. 9, 24–28 (1995).

  31. R. C. Duckworth, R. Knott, A. E. Fallick, et al., “Mineralogy and Sulfur Isotope Geochemistry of the Broken Spur Sulfides, 29°N Mid-Atlantic Ridge,” in Hydrothermal Vents and Processes, Ed. by L. M. Parson, C. L. Walker, and R. D. Dixon, Spec. Publ. Geol. Soc. London. 87, 175–189 (1995).

  32. E. G. Gurvich, Metalliferous Sediments of the World’s Ocean (Nauchnyi Mir, Moscow, 1998) [in Russian].

    Google Scholar 

  33. A. L. Vereshchaka and V. E. Vinogradov, “Three-Dimensional View of the Atlantic Abyssal Benthopelagic Vent Community,” Cah. Biol. Mar. 43, 303–305 (2002).

    Google Scholar 

  34. D. V. Grichuk, Thermodynamic Models of Submarine Hydrothermal Systems (Nauchnyi Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  35. S. G. Krasnov, G. A. Cherkashev, T. V. Stepanova, et al., “Detailed Geological Studies of Hydrothermal Fields in the North Atlantic,” in Hydrothermal Vents and Processes, Ed. by L. M. Parson, C. L. Walker, and R. D. Dixon, Spec. Publ. Geol. Soc. London. 87, 175–189 (1995).

  36. M. K. Tivey, S. E. Humphris, G. Thompson, et al., “Deducing Patterns of Fluid Flow and Mixing within the Active TAG Hydrothermal Mound Using Mineralogical and Geochemical Data,” J. Geophys. Res. 100, 12527–12555 (1995).

    Article  Google Scholar 

  37. M. D. Hannington, P. M. Herzig, S. D. Scott, et al., “Comparative Mineralogy and Geochemistry of Gold-Bearing Sulfide Deposits on the Mid-Ocean Ridge,” Mar. Geol. 101, 217–248 (1991).

    Article  Google Scholar 

  38. A. I. Krivtsov, O. V. Minina, A. G. Volochkov, et al., Sulfide Deposits. Series: Models of the Noble and Base Metal Deposits (TsNIGRI, Moscow, 2002) [in Russian].

    Google Scholar 

  39. V. Yu. Rusakov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2002).

  40. M. D. Rudnicki, Hydrothermal Plumes at the Mid-Atlantic Ridge. PhD Thesis. (Cambridge Univ., Cambridge, 1990).

    Google Scholar 

  41. V. Yu. Rusakov, “Flux and Precipitation of Hydrothermal Iron in Rift Valley at 26° and 29°N Mid-Atlantic Ridge,” Okeanologiya, 2007 (in press).

  42. D. R. Janecky and I. Shanks II, “Computational Modeling of Chemical and Sulfur Isotopic Reaction Processes in Seafloor Hydrothermal Systems: Chimneys, Massive Sulfides, and Subjacent Alteration Zones,” Can. Mineral. 26, 805–825 (1988).

    Google Scholar 

  43. M. D. Rudnicki and H. Elderfield, “A Chemical Model of the Buoyant and Neutrally Buoyant Plume Above the TAG Vent Field, 26 Degree N, Mid-Atlantic Ridge,” Geochim. Cosmochim. Acta 57, 2939–2957 (1993).

    Article  Google Scholar 

  44. V. V. Kuznetsov, Physical and Colloidal Chemistry (Vysshaya Shkola, Moscow, 1968) [in Russian].

    Google Scholar 

  45. A. G. Betekhtin, F. I. Vol’fson, A. N. Zavaritskii, et al., Principal Problems in the Theory of Magmatic Ore Deposits (AN SSSR, Moscow, 1953) [in Russian].

    Google Scholar 

  46. N. N. Mozgova, Yu. S. Borodaev, I. F. Gablina, et al., “Mineral Assemblages as Indicators of the Maturity of Oceanic Hydrothermal Sulfide Mounds,” Litol. Polezn. Iskop., No. 4, 339–367 (2005) [Lithol. Miner. Resour. 40, 293–319 (2005)].

  47. J. B. Murowchick and H. L. Barnes, “Marcasite Precipitation from Hydrothermal Solution,” Geochim. Cosmochim. Acta 50(12), 2615–2629 (1986).

    Article  Google Scholar 

  48. Yu. A. Bogdanov, N. S. Bortnikov, I. V. Vikent’ev, et al., “A New Type of Modern Mineral-Forming Systems: Black Smokers of the Hydrothermal Field at 14°45′N Latitude, Mid-Atlantic Ridge,” Geol. Rudn. Mestorozhd. 39, 68–90 (1997) [Geol. Ore Dep. 39, 58–78 (1997)].

    Google Scholar 

  49. C. R. German and R. S. J. Sparks, “Particle Recycling in the TAG Hydrothermal Plume,” Earth Planet. Sci. Lett 116, 129–134 (1993).

    Article  Google Scholar 

  50. M. D. Hannington and I. R. Jonasson, “Physical and Chemical Processes of Mid-Ocean Ridges,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophys. Monograph. 91, 115–156 (1995).

    Google Scholar 

  51. A. P. Lisitsyn, Yu. A. Bogdanov, L. P. Zonenshain, et al., “Hydrothermal Occurrences of Mid-Atlantic Ridge at 26°N (TAG Hydrothermal Field),” Izv. Akad. Nauk SSSR, Ser. Geol., No. 12, 3–20 (1989).

  52. K. L. von Damm, A. M. Bray, L. G. Buttermore, and S. E. Oosting, “The Geochemical Controls on Vent Fluids from the Lucky Strike Vent Field, Mid-Atlantic Ridge,” Earth Planet. Sci. Lett. 160, 521–536 (1998).

    Article  Google Scholar 

  53. J. L. Charlou, J. P. Donval, E. Douville, et al., “Compared Geochemical Signatures and the Evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) Hydrothermal Fluids, South of the Azores Triple Junction on the Mid-Atlantic Ridge,” Chem. Geol., No. 171, 49–75 (2000).

  54. K. L. von Damm, L. G. Buttermore, S. E. Oosting, et al., “Direct Observation of the Evolution of a Seafloor ‘Black Smoker’ from Vapor to Brine,” Earth Planet. Sci. Lett. 149, 101–111 (1997).

    Article  Google Scholar 

  55. A. P. Lisitsyn, Yu. A. Bogdanov, and E. G. Gurvich, Hydrothermal Rocks of the Oceanic Rift Zones (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Rusakov, 2007, published in Geokhimiya, 2007, No. 7, pp. 766–785.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusakov, V.Y. Comparative analysis of the mineral and chemical compositions of black smoker smoke at the TAG and Broken Spur hydrothermal fields, mid-Atlantic ridge. Geochem. Int. 45, 698–716 (2007). https://doi.org/10.1134/S0016702907070063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702907070063

Keywords

Navigation