Skip to main content
Log in

Associations of Mn-bearing minerals as indicators of oxygen fugacity during the metamorphism of metalliferous deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper summarizes experimental and calculation data on the effect of oxygen fugacity on the origin of mineral assemblages in Mn-bearing rocks and demonstrates the possibility of application of these data to the reconstruction of conditions under which metalliferous deposits were metamorphosed. A new variant of the T-log\(f_{O_2 } \) diagram is proposed for the Mn-Si-O system, which differs from previous ones by the location of the lines for the formation (decomposition) of braunite and tephroite. These two minerals are the most universal indicators of oxygen fugacity during the metamorphism of Mn-bearing deposits, because these minerals are widespread in nature and can be formed in diverse environments: braunite at high \(f_{O_2 } \) values in the pore solution, and tephroite at low \(f_{O_2 } \) values. The occurrence of Mn oxides and rhodonite (pyroxmangite) in a rock makes it possible to constrain the oxygen fugacity range. An original T-log\(f_{O_2 } \) diagram is constructed for the Ca-Mn-Si-O system. As follows from this diagram, a Ca admixture expands the stability field of rhodonite toward higher oxygen fugacity values. Johannsenite can be formed in these rocks at even higher \(f_{O_2 } \). The stability of both minerals is constrained in the region of low \(f_{CO_2 } \). The paper reports data on the Fe-Si-O and Mn-Fe-Si-O systems and discusses the possibility of applying the results of experiments in the Mn-Al-Si-O system to the estimation of conditions under which andalusite, spessartine, and galaxite can be formed in Mn-bearing rocks. Data on the mineralogy of numerous Mn deposits metamorphosed under various PTX parameters indicate that the origin of Mn-bearing mineral assemblages depends not so much on the temperature and pressure as on the oxygen fugacity, which is, in turn, controlled primarily by the composition of the pristine sediments (the presence or absence of organic matter in them) and host rocks and depends on the permeability of the rocks to oxygen, the P-T conditions, and the duration of the metamorphic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Dasgupta and R. M. Manickavasagam, “Regional Metamorphism of Non-Calcareous Manganiferous Sediments from India and a Related Petrogenetic Grid for a Part of the System Mn-Fe-Si-O,” J. Petrol. 22, 363–396 (1981).

    Google Scholar 

  2. A. Mottana, “Blueschist-Facies Metamorphism of Manganiferous Cherts: A Review of the Alpine Occurrences,” in Blueschist and Eclogites, Ed. by B. W. Evans and H. Brown, Geol. Soc. Am. Men. 164, 267–299 (1986).

  3. T. Miyano and N. J. Beukes, “Physicochemical Environments for the Formation of Quartz-Free Manganese Oxide Ores from the Early Proterozoic Hotazel Formation, Kalahari Manganese Field, South Africa,” Econ. Geol. 82, 706–718 (1987).

    Google Scholar 

  4. P. M. Ashley, “Geochemistry and Mineralogy of Tephroite-Bearing Rocks from the Hoskins Manganese Mine, New South Wales, Australia,” Neues Jahrb. Mineral. Abh. 161, 85–111 (1989).

    Google Scholar 

  5. S. Dasgupta, P. Sengupta, P. K. Bhattacharya, et al., “Mineral Reaction in Manganese Oxide Rock: P-T-X Phase Relations,” Econ. Geol. 84, 434–443 (1989).

    Google Scholar 

  6. S. Dasgupta, “P-T-X Relationships during Metamorphism of Manganese-Rich Sediments: Current Status and Future Studies,” in Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits Geol. Soc. Spec. Publ. 19, 327–337 (1997).

  7. F. Mancini, R. Alviola, B. Marshall, et al., “The Manganese Silicate Rocks of the Early Proterozoic Vittinki Group, Southwestern Finland: Metamorphic Grade and Genetic Interpretations,” Can. Mineral. 38, 1103–1124 (2000).

    Google Scholar 

  8. V. T. Kazachenko and V. V. Kiselev, “Manganese Mineral Assemblages as Indicators of the Redox Conditions of Metamorphism of Metalliferous Deposits,” Tikhookean. Geol. 23(5), 81–100 (2004).

    Google Scholar 

  9. I. Abs-Wurmbach, Tj. Peters, K. Langer, and W. Schreyer, “Phase Relations in the System Mn-Si-O: An Experimental and Petrological Study,” Neues Jahrb. Mineral. Abh. 146, 258–279 (1983).

    Google Scholar 

  10. R. A. Robie, S. Huebner, and B. S. Hemingway, “Heat Capacities and Thermodynamic Properties of Braunite (Mn7SiO12) and Rhodonite (MnSiO7),” Am. Mineral. 80, 560–575 (1995).

    Google Scholar 

  11. V. A. Zharikov, Principles of Physicochemical Petrology (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  12. A. G. Bulakh and V. G. Krivovichev, Calculations of Mineral Equilibria (Nedra, Leningrad, 1985) [in Russian].

    Google Scholar 

  13. R. G. Berman, “Thermobarometry Using Multiequilibrium Calculations: A New Technique with Petrological Application,” Can. Mineral. 29, 833–855 (1991).

    Google Scholar 

  14. J. Jimenez-Millan and N. Velilla, “Mineralogy and Geochemistry of Reduced Manganese Carbonate-Silicate Rocks from the Aracena Area (Iberian Massif, SW Spain),” Neues Jahrb. Mineral. Abh. 166, 193–209 (1994).

    Google Scholar 

  15. I. Abs-Wurmbach and Tj. Peters, “The Mn-Al-Si-O System: An Experimental Study of Phase Relations Applied to Parageneses in Manganese-Rich Ores and Rocks,” Eur. J. Mineral. 2, 45–68 (1999).

    Google Scholar 

  16. T. Watanabe, S. Yui, and A. Kato, “Bedded Manganese Deposits in Japan, a Review,” in Volcanism and Ore Genesis, Ed. by T. Tatsumi, (Univ. Tokyo, Tokyo, 1970; Mir, Moscow, 1973), pp. 119–142.

    Google Scholar 

  17. E. Gnos and Tj. Peters, “Tephroite-Hausmannite-Galaxite from a Granulite-Facies Manganese Rock of United Arab Emirates,” Contrib. Mineral. Petrol. 120, 372–377 (1995).

    Article  Google Scholar 

  18. L. I. Kulish and E. A. Kulish, Metamorphic Manganese Complexes of the Russian Far East (ITG DNTs RAN, Khabarovsk, 1974) [in Russian].

    Google Scholar 

  19. M. J. K. Flohr and J. S. Huebner, “Mineralogy and Geochemistry of Two Metamorphosed Sedimentary Manganese Deposits, Sierra-Nevada, California, USA,” Lithos. 29, 57–85 (1992).

    Article  Google Scholar 

  20. A. I. Brusnitsyn and I. G. Zhukov, “The South Faizuly Manganese Deposit in the Southern Urals: Geology, Petrography, and Formation Conditions,” Litol. Polezn. Iskop., No. 1, 35–55 (2005) [Lithol. Miner. Resour. 40, 30–47 (2005)].

  21. D. S. Korzhinskii, Theoretical Principles of the Analysis of Mineral Assemblages (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  22. R. Cabella, L. Gaggera, and G. Lucchetti, “Isothermal-Isobaric Mineral Equilibria in Braunite-, Rhodonite-, Johannsenite-, Calcite-Bearing Assemblages from Northern Apennine Metacherts (Italy),” Lithos. 27, 149–154 (1991).

    Article  Google Scholar 

  23. B. Buhn, M. Okrusch, E. Woermann, et al., “Metamorphic Evolution of Neoproterozoic Manganese Formation and Their Country Rocks at Otjosondu, Namibia,” J. Petrol. 36(2), 463–496 (1995).

    Google Scholar 

  24. T. Theye and A.-M. Fransolet, “Virtually Pure Ottrelite from Region of Ottre, Belgium,” Eur. J. Mineral. 6, 547–555 (1994).

    Google Scholar 

  25. T. Reinecke, “Crystal Chemistry and Reaction Relation of Piemontites and Thulites from Highly Oxidized Low Grade Metamorphic Rocks at Vitali, Andros Island, Greece,” Contrib. Mineral. Petrol. 93, 56–76 (1986).

    Article  Google Scholar 

  26. J. Jimenez-Millan and N. Velilla, “Compositional Variation of Piemontites from Different Mn-Rich Rock-Types of the Iberian Massif (SW Spain),” Eur. J. Mineral. 5, 961–970 (1993).

    Google Scholar 

  27. D. P. Serdyuchenko and N. K. Dmitrienko, “Manganese Axinite and Manganese Andalusite: Constitutional Features and Paragenetic Significance,” in Geology and Geochemistry of Manganese (Nauka, Moscow, 1982), pp. 181–192 [in Russian].

    Google Scholar 

  28. A. I. Brusnitsyn, Rhodonite Deposits of the Central Urals: Mineralogy and Genesis (St. Petersb. Gos. Univ., St. Petersburg, 2000) [in Russian].

    Google Scholar 

  29. M. Keskinen and J. G. Liou, “Synthesis and Stability Relations of Mn-Al Piemontite, Ca2MnAl2Si3O12(OH),” Am. Mineral. 64, 317–328 (1979).

    Google Scholar 

  30. W. I. Gustafson, “The Stability of Andradite, Hedenbergite and Related Minerals in the System Ca-Fe-Si-O-H,” J. Petrol. 15, 455–496 (1974).

    Google Scholar 

  31. J. S. Liou, “Stability Relations of the Andradite-Quartz in the System Ca-Fe-Si-O-H,” Am. Mineral. 59, 1016–1025 (1974).

    Google Scholar 

  32. A. I. Brusnitsyn, Yu. S. Balashova, O. V. Gavryutchenkova, et al., “Native Copper from Manganese Rocks of the Bikkulovskii Deposit in the Southern Urals,” in Proceedings of the 6th All-Russia Conference on Mineralogy of the Urals-2003, Miass, Russia, 2003 (Inst. Min. Ural. Nauch. Ts. RAN, Miass, 2003), Vol. 2, pp. 29–35 [in Russian].

    Google Scholar 

  33. Y. Kawachi, R. H. Grapre, D. S. Coombs, and M. Dowsf, “Mineralogy and Petrology of a Piemontite-Bearing Schist, Western Otago, New Zealand,” J. Metamorph. Geol. 1, 353–372 (1983).

    Google Scholar 

  34. J. Gutzmer, M. O. Schaefer, and N. J. Beukes, “Red Bed-Hosted Oncolitic Manganese Ore of the Paleoproterozoic Soutpansberg Group, Bronkhorstfontein, South Africa,” Econ. Geol. 97, 1151–1166 (2002).

    Article  Google Scholar 

  35. J. Gutzmer and N. J. Beukes, “Mineral Paragenesis of the Kalahari Manganese Field, South Africa,” Ore Geo. Rev. 11, 405–428 (1996).

    Article  Google Scholar 

  36. E. Bonatti, M. Zerbi, R. Kay, and H. Rydell, “Metalliferous Deposits from the Apennine Ophiolites: Mesozoic Equivalents of Modern Deposits from Oceanic Spreading Centers,” Geol. Soc. Am. Bull. 87, 83–94 (1976).

    Article  Google Scholar 

  37. G. Lucchetti, “Tephroite from Val Graveglia Metacherts (Liguria, Italy): Mineral Data and Reaction for Mn-Silicates and Mn-Ca-Carbonates,” Eur. J. Mineral. 3, 63–68 (1991).

    Google Scholar 

  38. P. Marescotti and M. L. Frezzotti, “Alteration of Braunite Ores from Eastern Liguria (Italy) During Syntectonic Veining Processes: Mineralogy and Fluid Inclusions,” Eur. J. Mineral. 12, 341–356 (2000).

    Google Scholar 

  39. E. V. Starikova, A. I. Brusnitsyn, and I. G. Zhukov, Paleohydrothermal Edifice of the Kyzyl Tash Manganese Deposit, Southern Urals: Structure, Composition, and Genesis (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  40. J. S. Huebner, M. J. K. Flohr, and J. N. Grossman, “Chemical Fluxes and Origin of Manganese Carbonate-Oxide-Silicate Deposit in Bedded Chert,” Chem. Geol. 100, 93–118 (1992).

    Article  Google Scholar 

  41. T. F. Yui, C. H. Lo, and C. W. Lee, “Mineralogy and Petrology of Metamorphosed Manganese-Rich Rocks in the Area of Santxan River, Eastern Taiwan,” Neues Jahrb. Mineral. Abh. 3, 249–268 (1989).

    Google Scholar 

  42. S. W. Faryad, “Mineralogy of the Mn-Rich Rocks from Greenschist Facies Sequences of the Gemericum, West Carpathians, Slovakia,” Neues. Jahrb. Mineral. Mh. 10, 464–480 (1994).

    Google Scholar 

  43. E. N. Perova, Physicochemical Model of the Formation of the Metamorphosed Silicate Manganese Deposits (St. Peterb. Gos. Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  44. S. Roy, S. Dasgupta, N. Majumdar, et al., “Petrology of Manganese Silicate-Carbonate-Oxide Rock of Sausar Group, India,” Neues Jahrb. Mineral. Abh. 12, 561–568 (1986).

    Google Scholar 

  45. P. K. Bhattacharya, S. Dasgupta, G. Chattopadhyay, et al., “Petrology of Jacobsite Bearing Assemblages from Sausar Group, India,” Neues Jahrb. Mineral. Abh. 159(1), 101–111 (1988).

    Google Scholar 

  46. S. Dasgupta, S. Roy, and M. Fukuoka, “Depositional Model for Manganese Oxide and Carbonate Deposits of the Precambrian Sausar Group, India,” Econ. Geol. 87, 1412–1418 (1992).

    Google Scholar 

  47. G. A. Winter, E. J. Essene, and D. R. Peacor, “Carbonates and Pyroxenoids from Manganese Deposit near Bald Knob, North Carolina,” Am. Mineral. 66, 278–289 (1981).

    Google Scholar 

  48. M. J. K. Flohr, “Geochemistry and Origin of the Bald Knob Manganese Deposit, North Carolina,” Econ. Geol. 87, 2023–2040 (1992).

    Article  Google Scholar 

  49. J. S. Beard and R. J. Tracy, “Spinel and Other Oxides in Mn-Rich Rock from the Hutter Mine, Pittsylvania County, Virginia, U.S.A.: Implications of Miscibility and Solvus Relations Among Jacobsite, Galaxite, and Magnetite,” Am. Mineral. 87, 690–698 (2002).

    Google Scholar 

  50. S. Dasgupta, Y. Hariya, and H. Miura, “Compositional Limits of Manganese Carbonates and Silicates in Granulite Facies Metamorphosed Deposits of Garbham, Eastern Ghats, India,” Resour. Geol. Spec. Issue, No. 17, 43–49 (1993).

  51. K.-I. Hayashi and M. El Rhazi, “Oxygen Isotope Study of Metamorphosed Manganese Deposits of the Nada-Tamagawa Mine, Northeast Japan,” Econ. Geol. 98, 181–189 (2003).

    Article  Google Scholar 

  52. V. N. Kuleshov and Zh. V. Dombrovskaya, “Manganese Deposits of Georgia: Communication 2. Origin of the Manganese Ores, with the Chiatura and Kvirila Deposits as Examples,” Litol. Polezn. Iskop., No. 4, 339–355 (1997) [Lithol. Miner. Resour. 32, 295–309 (1997)].

  53. J. R. Hein and R. A. Koski, “Bacterially Mediated Diagenetic Origin for Chert-Hosted Manganese Deposits in the Franciscan Complex, California Coast Ranges,” Geology 15, 722–726 (1987).

    Article  Google Scholar 

  54. M. El Rhazi and K. Hayashi, “Origin and Formational Environment of Noda-Tamagawa Manganese Ore, Northeast Japan: Constraints from Isotopic Studies,” Chem. Erde. 63, 149–162 (2003).

    Article  Google Scholar 

  55. V. N. Kuleshov and A. I. Brusnitsyn, “Isotopic Composition (δ13C, δ18O) and the Origin of Carbonates from Manganese Deposits of the Southern Urals,” Litol. Polezn. Iskop., No. 4, 416–429 (2005) [Lithol. Miner. Resour. 40, 364–375 (2005)].

  56. Metamorphic Facies, Ed. by V. S. Sobolev (Nedra, Moscow, 1970) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Brusnitsyn, 2007, published in Geokhimiya, 2007, No. 4, pp. 390–410.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusnitsyn, A.I. Associations of Mn-bearing minerals as indicators of oxygen fugacity during the metamorphism of metalliferous deposits. Geochem. Int. 45, 345–363 (2007). https://doi.org/10.1134/S0016702907040039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702907040039

Keywords

Navigation