Skip to main content
Log in

Resurgence and Partial Theta Series

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We consider partial theta series associated with periodic sequences of coefficients, namely, \(\Theta(\tau):= \sum_{n>0} n^\nu f(n) e^{i\pi n^2\tau/M}\), where \(\nu\in\mathbb{Z}_{\ge0}\) and

\(f\colon\mathbb{Z} \to \mathbb{C}\) is an \(M\)-periodic function. Such a function \(\Theta\) is analytic in the half-plane \(\{ \operatorname {Im}\tau>0\}\) and in the asymptotics of \(\Theta(\tau)\) as \(\tau\) tends nontangentially to any \(\alpha\in\mathbb{Q}\) a formal power series appears, which depends on the parity of \(\nu\) and \(f\). We discuss the summability and resurgence properties of these series; namely, we present explicit formulas for their formal Borel transforms and their consequences for the modularity properties of \(\Theta\), or its “quantum modularity” properties in the sense of Zagier’s recent theory. The discrete Fourier transform of \(f\) plays an unexpected role and leads to a number-theoretic analogue of Écalle’s “bridge equations.” The main thesis is: (quantum) modularity \(=\) Stokes phenomenon \(+\) discrete Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Notes

  1. The convolution product \(*\) is given by the formula \(\hat\psi_1*\hat\psi_2(\xi) = \int_0^\xi \hat\psi_1(\xi_1) \hat\psi_2(\xi-\xi_1)\,d\xi_1\) for \(|\xi|\) small enough and is known to have endless analytic continuation when both factors have (see [6] or [18, Chap. 6])). Of course, \(\mathcal{L}^{\theta'}(\hat\psi_1*\hat\psi_2) = (\mathcal{L}^{\theta'}\hat\psi_1)(\mathcal{L}^{\theta'}\hat\psi_2)\) for a singularity-free direction \(\theta'\), and \(\mathcal{S}^{\theta'}(\tilde\psi_1\tilde\psi_2)=(\mathcal{S}^{\theta'}\tilde\psi_1)(\mathcal{S}^{\theta'}\tilde\psi_2)\) in that case.

  2. By a cusp we mean any orbit of the action of \(\Gamma\) on \(\mathbb{Q}\cup \{i\infty\}\).

References

  1. J. E. Andersen and W. E. Mistegård, “Resurgence analysis of quantum invariants of Seifert fibered homology spheres”, J. Lond. Math. Soc., II Ser., 105:2 (2022), 709–764.

    Article  MathSciNet  Google Scholar 

  2. K. Bringmann, J. Kaszian, and A. Milas, “Higher depth quantum modular forms, multiple Eichler integrals, and \(\mathfrak{sl}_3\) false theta functions”, Res. Math. Sci., 6:2 (2019).

    Article  MathSciNet  Google Scholar 

  3. O. Costin and S. Garoufalidis, “Resurgence of the Kontsevich–Zagier series”, Ann. Inst. Fourier (Grenoble), 61:3 (2011), 1225–1258.

    Article  MathSciNet  Google Scholar 

  4. A. Dudko and D. Sauzin, “On the resurgent approach to Écalle–Voronin’s invariants”, C. R. Math. Acad. Sci. Paris, 353:3 (2015), 265–271.

    Article  MathSciNet  Google Scholar 

  5. A. Dudko and D. Sauzin, “The resurgent character of the Fatou coordinates of a simple parabolic germ”, C. R. Math. Acad. Sci. Paris, 352:3 (2014), 255–261.

    Article  MathSciNet  Google Scholar 

  6. J. Écalle, Les fonctions résurgentes. Tomes I, II, Publications Mathématiques d’Orsay 81, 5&6 Université de Paris-Sud, Orsay, 1981.

    Google Scholar 

  7. J. Écalle, “Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture”, Bifurcations and periodic orbits of vector fields (Montreal, PQ, 1992), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993, 75–184.

    Chapter  Google Scholar 

  8. L. Han, Y. Li, D. Sauzin, and S. Sun, Resurgence and modularity of partial theta series,.

  9. P. Flajolet and M. Noy, “Analytic combinatorics of chord diagrams”, Formal power series and algebraic combinatorics (Moscow, 2000), Springer, Berlin, 2000, 191–201.

    Chapter  Google Scholar 

  10. A. Goswami and R. Osburn, “Quantum modularity of partial theta series with periodic coefficients”, Forum Math., 33:2 (2021), 451–463.

    Article  MathSciNet  Google Scholar 

  11. S. Gukov and C. Manolescu, “A two-variable series for knot complements”, Quantum Topol., 12:1 (2021), 1–109.

    Article  MathSciNet  Google Scholar 

  12. S. Gukov, M. Mariño, and P. Putrov, Resurgence in complex Chern–Simons theory, arXiv: 1605.07615.

  13. Nonlinear Stokes Phenomena, Adv. Sov. Math., 14 Amer. Math. Soc., Providence, RI, 1993.

    Book  Google Scholar 

  14. M. Kontsevich and Y. Soibelman, “Analyticity and resurgence in wall-crossing formulas”, Lett. Math. Phys., 112:2 (2022), 56.

    Article  MathSciNet  Google Scholar 

  15. R. Lawrence and D. Zagier, “Modular forms and quantum invariants of \(3\)-manifolds”, Asian J. Math., 3:1 (1999), 93–107.

    Article  MathSciNet  Google Scholar 

  16. The LMFDB Collaboration, The L-functions and modular forms database, (2022).

  17. F. Menous, “Les bonnes moyennes uniformisantes at une application à la resommation réelle”, Ann. Fac. Sci. Toulouse, Math. (6), 8:4 (1999), 579–628.

    Article  MathSciNet  Google Scholar 

  18. C. Mitschi and D. Sauzin, Divergent Series, Summability and Resurgence. I, Lect. Notes Math., 2153 Springer, Cham, 2016.

    Book  Google Scholar 

  19. D. Sauzin, “Mould expansions for the saddle-node and resurgence monomials”, Renormalization and Galois theories. Selected papers of the CIRM workshop (Luminy, France, March 2006), European Mathematical Society, Zürich, 2009, 83–163.

    Chapter  Google Scholar 

  20. D. Sauzin, “Nonlinear analysis with resurgent functions”, Ann. Sci. Éc. Norm. Supér. (4), 48:3 (2015), 667–702.

    Article  MathSciNet  Google Scholar 

  21. G. Shimura, “On modular forms of half integral weight”, Ann. of Math. (2), 97 (1973), 440–481.

    Article  MathSciNet  Google Scholar 

  22. D. Zagier, “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 659–675.

    Google Scholar 

  23. D. Zagier, “The dilogarithm function”, Frontiers in number theory, physics, and geometry. II, Springer-Verlag, Berlin, 2007, 3–65.

    Google Scholar 

  24. D. Zagier, “Vassiliev invariants and a strange identity related to the Dedekind eta-function”, Topology, 40:5 (2001), 945–960.

    Article  MathSciNet  Google Scholar 

Download references

Funding

The second and third authors thank Capital Normal University for hospitality. The second author acknowledges support from NSFC (grant no. 11771303). The fourth author is partially supported by National Key R&D Program of China (grant no. 2020YFA0713300) and by NSFC (grant nos. 11771303, 12171327, 11911530092, and 11871045). This paper is partly a result of the ERC-SyG project, Recursive and Exact New Quantum Theory (ReNewQuantum), which received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sauzin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2023, Vol. 57, pp. 89–112 https://doi.org/10.4213/faa4031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Li, Y., Sauzin, D. et al. Resurgence and Partial Theta Series. Funct Anal Its Appl 57, 248–265 (2023). https://doi.org/10.1134/S001626632303005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001626632303005X

Keywords

Navigation