Skip to main content
Log in

A new methodology for producing pyrocarbon composites containing zerovalent iron nanoparticles

  • Chemistry
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

A magnetic pyrocarbon composite containing nanoparticles with an overwhelming predominance of zerovalent iron has been synthesized. The nanocomposite has a core–shell–matrix structure in which Fe0 nanoparticles with an average size of 50 nm are located in the pyrocarbon matrix and coated with a ferrite shell preventing their aggregation and oxidation. The composite is distinguished for its high thermal stability, magnetic properties 59 G cm3/g, and electrical conductivity as high as that of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Popymers), Moscow Khimiya, 2000.

    Google Scholar 

  2. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Usp. Khim., 2005, vol. 74, pp. 539–574.

    Article  Google Scholar 

  3. Hayashi, K., Sakamoto, W., and Yogo, T., J. Magn. Magn. Mater., 2009, vol. 321, no. 5, pp. 450–457.

    Article  CAS  Google Scholar 

  4. Hasegawa, D., Yang, H., Ogawa, T., and Takahashi, M., J. Magn. Magn. Mater., 2009, vol. 321, no. 7, pp. 746–749.

    Article  CAS  Google Scholar 

  5. Yurkov, G.Yu., Biryukova, M.I., Koksharov, Yu.A., et al., Perspektv. Mater., 2013, no. 6, pp. 51–62.

    Google Scholar 

  6. Vasil’kov, A.Yu., Suzdalev, I.P., Maksimov, Yu.V., et al., Zh. Fiz. Khim., 2013, vol. 87, no. 6, pp. 1000–1007.

    Google Scholar 

  7. Denkbas, E.B., Kilicay, E., Birlikseven, C., and Ozturk, E., React. Funct. Polym., 2002, vol. 50, pp. 225–232.

    Article  CAS  Google Scholar 

  8. Gorshenev, V.N., Khim. Fiz., 2014, vol. 33, no. 1, pp. 69–75.

    CAS  Google Scholar 

  9. Gorshenev, V.N., Khim. Fiz., 2011, vol. 30, no. 9, pp. 27–34.

    CAS  Google Scholar 

  10. Mel’nik, O.A., Dyachenko, V.I., Nikitin, L.N., et al., Dokl. Chem., 2012, vol. 443, part 2, pp. 107–110.

    Article  Google Scholar 

  11. Mel’nik, O.A., Dyachenko, V.I., Nikitin, L.N., et al., Vysokomol. Soedin., Ser. A, 2013, vol. 55, no. 11, pp. 1315–1320.

    Google Scholar 

  12. Dvorikova, R.A., Nikitin, L.N., Korshak, Yu.V., et al., Dokl. Chem., 2008, vol. 422, part 1, pp. 231–235.

    Article  CAS  Google Scholar 

  13. Dvorikova, R.A., Nikitin, L.N., Korshak, Yu.V., et al., Ross. Nanotekh., 2010, vol. 5, no. 9/10, pp. 94–100.

    Google Scholar 

  14. Dyachenko, V.I., Nikitin, L.N., Mel’nik, O.A., et al., Fluorine Notes, 2011, vo. 79, no. 6 (http:// notesfluorine1ru).

  15. Bruker, TOPAS 4.2, User Manual, Bruker AXS, Gmbh, Karlsruhe, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Dyachenko.

Additional information

Original Russian Text © V.I. Dyachenko, O.A. Mel’nik, I.S. Bushmarinov, S.S. Abramchuk, S.M. Igumnov, L.N. Nikitin, 2016, published in Doklady Akademii Nauk, 2016, Vol. 467, No. 6, pp. 665–669.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyachenko, V.I., Mel’nik, O.A., Bushmarinov, I.S. et al. A new methodology for producing pyrocarbon composites containing zerovalent iron nanoparticles. Dokl Chem 467, 126–130 (2016). https://doi.org/10.1134/S0012500816040078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500816040078

Keywords

Navigation