Skip to main content
Log in

Effects of Heavy Metals on the Metabolome of Pinus sylvestris (Pinaceae)

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

The effects of Cu, Ni, and Cd on the Pinus sylvestris metabolome was studied in experimental conditions by gas chromatography–mass spectrometry (GC–MS). Structural changes in plant metabolite network became detectable on day 6 of exposure to the metals, 3–6 days earlier than visual signs of toxicity developed. Differences at the metabolome level arose earlier in a control group of plants, and specific effects of particular metals on the plant metabolome became distinct on day 9. Both nature and concentration of a metal equally contributed to the plant metabolome clustering. Plant responses (changes in concentrations of individual metabolites) to metal exposure substantially differed depending on the metal concentration (1 or 5 mM) and nature. The effects of Cd and Cu were generally similar, while the effect of Ni was often different. Dynamic changes visualized in plant metabolite matrix reflected the changes in its correlation structure, rather than depending on the set of particular compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Abdel-Latif, A., Cadmium induced changes in pigment content, ion uptake, proline content and phosphoenolpyruvate carboxylase activity in Triticum Aestivum seedlings, Aust. J. Basic Appl. Sci., 2008, vol. 2, no. 1, pp. 57–62.

    CAS  Google Scholar 

  2. Al-Khlaifat, A. and Al-Khashman, O., Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves, Atmos. Environ., 2007, vol. 41, pp. 8891–8897.

    Article  CAS  Google Scholar 

  3. Andrade, S.A.L., Gratão, P.L., Schiavinato, M.A., Silveira, A.P., Azevedo, R.A., and Mazzafera, P., Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations, Chemosphere, 2009, vol. 75, pp. 1363–1370.

    Article  CAS  PubMed  Google Scholar 

  4. Anjum, N.A., Hasanuzzaman, M., Hossain, M.A., Thangavel, P., Roychoudhury, A., Gill, S.S., Rod-rigo, M.A.M., Adam, V., Fujita, M., Kizek, R., Duarte, A.C., Pereir, E., and Ahmad, I., Jacks of metal/metalloid chelation trade in plants. An overview, Front. Plant Sci., 2015, vol. 6, p. 192.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Balestrasse, K.B., Gallego, S.M., Benavides, M.P., and Tomaro, M.L., Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants, Plant Soil, 2005, vol. 270, pp. 343–353.

    Article  CAS  Google Scholar 

  6. Bhalerao, S.A., Sharma, A.S., and Poojari, A.C., Toxicity of Nickel in Plants, Int. J. Pure Appl. Biosci., 2015, vol. 3, no. 2, pp. 345–355.

    Google Scholar 

  7. Caretto, S., Linsalata, V., Colella, G., Mita, G., and Lattanzio, V., Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress, Int. J. Mol. Sci., 2015, vol. 16, no. 11, pp. 26378–26394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, B., Stein, A., Castell, N., Gonzalez-Castanedo, Y., Sanchez de la Campa, A.M., and de la Rosa, J.D., Modeling and evaluation of urban pollution events of atmospheric heavy metals from large Cu-smelter, Sci. Total Environ., 2016, vol. 539, pp. 17–25.

    Article  CAS  PubMed  Google Scholar 

  9. Drozdova, I.V., Alekseeva-Popova, N.V., Beljaeva, A.I., and Kalimova, I.B., Effect of copper, nickel and cadmium on growth and some physiological parameters of seedlings Pinus sylvestris and Picea abies (Pinaceae), Rastit. Resur., 2014, vol. 50, no. 4, pp. 554–566.

    Google Scholar 

  10. Fiehn, O., Metabolomics–the link between genotypes and phenotypes, Plant Mol. Biol., 2002, vol. 48, pp. 155–171.

    Article  CAS  PubMed  Google Scholar 

  11. Guy, C., Kaplan, F., Kopka, J., Selbig, J., and Hin-cha, D.K., Metabolomics of temperature stress, Physiol. Plant., 2008, vol. 132, pp. 220–235.

    CAS  PubMed  Google Scholar 

  12. Hassan, M.U., Chattha, M.U., and Khan, I., Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities–a review, Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 12673–12688.

    Article  CAS  Google Scholar 

  13. Ivanov, Y.V., Savochkin, Y.V., and Kuznetsov, V.V., Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 1. Effects of continuous zinc presence on morphometric and physiological characteristics of developing pine seedlings, Fiziol. Rast., 2011, vol. 58, no. 5, pp. 728–736.

    Google Scholar 

  14. Ivanov, Yu.V., Savochkin, Yu.V., and Kuznetsov, A.V., Development of scots pine seedlings and functioning of antioxidant systems under the chronic action of lead ions, Biol. Bull., 2013, vol. 40, no. 1, pp. 26–35.

    Article  CAS  Google Scholar 

  15. Kandziora-Ciupa, M., Ciepał, R., and Nadgórska-Socha, A., Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites, Ecotoxicology, 2016, vol. 25, pp. 970–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., and Schiller, K.C., Exploring the temperature-stress metabolome of Arabidopsis, Plant Physiol., 2004, vol. 136, pp. 4159–4168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kartashov, A.V., Radyukina, N.L., Ivanov, Yu.V., Pashkovskii, P.P., Shevyakova, N.I., and Kuznetsov, V.V., Role of antioxidant systems in wild plant adaptation to salt stress, Russ. J. Plant. Physiol., 2008, vol. 55, no. 4, pp. 463–468.

    Article  CAS  Google Scholar 

  18. Kumar, N., Pal, M., Singh, A., Kumar SaiRam, R., and Srivastava, G.H., Exogenous proline alleviates oxidative stress vase life in rose (Rosa hybrida L. “Grand Gala”), Sci. Hortic., 2010, vol. 127, pp. 79–85.

    Article  CAS  Google Scholar 

  19. Kurilenko, V.V., Zaiceva, O.V., Novikova, E.A., Osmolovskaya, N.G., and Ufimceva, M.D., Osnovy ekogeologii, bioindikatsii i biotestirovaniya vodnykh ekosistem (Fundamentals of Ecogeology, Bioindication and Biotesting of Aquatic Ecosystems), St. Petersburg, 2004.

  20. Morsy, A.A., Salama, K.H.A., Kamel, H.A., and Mansour, M.F., Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species, Eurasian J. Biosci., 2012, vol. 6, pp. 1–10.

    Article  CAS  Google Scholar 

  21. Nazar, R., Iqbal, N., Masood, A., Khan, M.I.R., Syeed, S., and Khan, N.A., Cadmium toxicity in plants and role of mineral nutrients in its alleviation, Am. J. Plant Sci., 2012, vol. 3, pp. 1476–1489.

    Article  Google Scholar 

  22. Osmolovskaya, N., Dung, V.V., and Kuchaeva, L., The role of organic acids in heavy metal tolerance in plants, Biol. Commun., 2018, vol. 63, no. 1, pp. 9–16.

    Article  Google Scholar 

  23. Osmolovskaya, N.G., Vu, V.D., Bilova, T.E., Kuchaeva, L.N., and Lykova, T.Yu., Metabolomic approach to the study of Amaranthus caudatus L. and Amaranthus cruentus L. tolerance to heavy metals, Tezisy doklada na konferentsii “125 let prikladnoi botaniki v Rossii” 25–28 noyabrya 2019 g. (Proc. Rep. Conf. “125 years of Applied Botany in Russia” November 25–28, 2019), St. Petersburg, 2019, pp. 245–246.

  24. Pacyna, J.M. and Pacyna, E.G., An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide, Environ. Rev., 2001, vol. 9, no. 4, pp. 269–298.

    Article  CAS  Google Scholar 

  25. Pongrac, P., Zhao, F.J., Razinger, J., Zrimec, A., and Regvar, M., Physiological responces to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species, Environ. Exp. Bot., 2009, vol. 66, pp. 479–486.

    Article  CAS  Google Scholar 

  26. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., and Davletova, S., When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress, Plant Physiol., 2004, vol. 134, pp. 1683–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., and Tsigaridas, K., Trees as bioindicator of heavy metal pollution in three European cities, Environ. Pollut., 2011, vol. 159, no. 12, pp. 3560–3570.

    Article  CAS  PubMed  Google Scholar 

  28. Sharma, S.S. and Dietz, K.J., The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress, J. Exp. Bot., 2006, vol. 57, pp. 711–726.

    Article  CAS  PubMed  Google Scholar 

  29. Shulaev, V., Cortes, D., Miller, G., and Mittler, R., Metabolomics for plant stress response, Physiol. Plant., 2008, vol. 132, pp. 199–208.

    Article  CAS  PubMed  Google Scholar 

  30. Singh, R., Gautam, N., Mishra, A., and Gupta, R., Heavy metals and living systems: An overview, Indian J. Pharmacol., 2011, vol. 43, no. 3, pp. 246–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, R.L., Zhou, Q.Z., Sun, F.H., and Jin, C.X., Antioxidative defense and proline/phytochelatin accumulationin a newly discovered Cd-hyperaccumulator, Solanum nigrum L., Environ. Exp. Bot., 2007, vol. 60, pp. 468–476.

    Article  CAS  Google Scholar 

  32. Titov, A.F., Kaznina, N.M., and Talanova, V.V., Tyazhelye metally i rasteniya (Heavy Metals and Plants), Petrozavodsk, 2014.

    Google Scholar 

  33. Václavík, P., Kmeťová, M., and Janiga, M., Heavy metals and other elements in the Pinus sylvestris needles – Ružomberok, Oecol. Mont., 2016, vol. 25, pp. 33–38.

    Google Scholar 

  34. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M.M., and Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem.-Biol. Interact., 2006, vol. 160, pp. 1–40.

    Article  CAS  PubMed  Google Scholar 

  35. Xie, Y., Hu, L., Du, Z., Sun, X., Amombo, E., Fan, J., and Fu, J., Effects of cadmium exposure on growth and metabolic profile of Bermudagrass (Cynodon dactilon (L.) Pers), PLoS One, 2014, vol. 9, no. 12, p. e115279.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yarmishko, V.T., Sosna obyknovennaya i atmosfernoe zagryaznenie na Evropeiskom Severe (Scots Pine and Aerial Pollution in the European North), St. Petersburg, 1997.

    Google Scholar 

  37. Zhao, H., Shao, Y., Yin, Ch., Jiang, Y., and Li, X., An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust, Sci. Total Environ., 2016, vol. 550, pp. 167–175.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by state contracts of the Komarov Botanical Institute (project nos. AAAA-A18-118032390136-5 and AAAA-A19-119030690058-2). Development of the statistical model of the metabolite network was supported by a Grant to Young Researchers from the President of the Russian Federation (project no. MK-799.2021.1.4 “Metabolomics of Microbial Communities of Lithobiont Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sazanova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazanova, K.V., Alekseeva-Popova, N.V., Drozdova, I.V. et al. Effects of Heavy Metals on the Metabolome of Pinus sylvestris (Pinaceae). Dokl Biol Sci 507, 364–372 (2022). https://doi.org/10.1134/S0012496622060199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496622060199

Keywords:

Navigation