Skip to main content
Log in

Existence of Martingale Solutions of Stochastic Differential Inclusions of Parabolic Type in a Hilbert Space

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We prove that measurable multivalued mappings assuming nonempty closed convex values in Hilbert spaces have progressively measurable selectors. We use this assertion to prove the theorem about the existence of martingale solutions to stochastic differential inclusions of the parabolic type in Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge: Cambridge Univ. Press, 2014.

    Book  Google Scholar 

  2. Levakov, A.A. and Vas’kovskii, M.M., Stokhasticheskie differentsial’nye uravneniya i vklyucheniya (Stochastic Differential Equations and Inclusions), Minsk: Belarus. Gos. Univ., 2019.

    Google Scholar 

  3. Levakov, A.A., Strong solutions of stochastic differential inclusions with unbounded right-hand side in a Hilbert space, Differ. Equations, 2018, vol. 54, no. 10, pp. 1321–1337.

    Article  MathSciNet  Google Scholar 

  4. Kisielewicz, M., Stochastic Differential Inclusions and Applications, New York–Heidelberg–Dordrecht–London: Spinger, 2013.

    Book  Google Scholar 

  5. Motyl, J., Existence of solutions of set-valued Itô equation, Bull. Polon. Acad. Sci., 1998, vol. 46, no. 4, pp. 419–430.

    MathSciNet  MATH  Google Scholar 

  6. Michta, M., On weak solutions to stochastic differential inclusions driven by semimartingales, Stoch. Anal. Appl., 2004, vol. 22, no. 5, pp. 1341–1361.

    Article  MathSciNet  Google Scholar 

  7. Jakubowski, A., Kamenskii, M., and De, FitteP.R., Existence of weak solutions to stochastic evolution inclusions, Stoch. Anal. Appl., 2005, vol. 23, pp. 723–749.

    Article  MathSciNet  Google Scholar 

  8. Vas’kovskii, M.M., Existence of \(\beta \)-martingale solutions of stochastic evolution functional equations of parabolic type with measurable locally bounded coefficients, Differ. Equations, 2012, vol. 48, no. 8, pp. 1065–1080.

    Article  MathSciNet  Google Scholar 

  9. Ondrejat, M., Existence of global martingale solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process, Stoch. Dyn., 2006, vol. 6, no. 1, pp. 23–52.

    Article  MathSciNet  Google Scholar 

  10. Kuratowski, K. and Ryll-Nardzewski, C., A general theorem on selectors, Bull. Polon. Acad. Sci., 1965, vol. 13, pp. 397–403.

    MathSciNet  MATH  Google Scholar 

  11. Castaing, M.C. and Valadier, M., Convex analysis and measurable multifunctions, Berlin: Spinger, 1977.

    Book  Google Scholar 

  12. Diestel, J., Remarks on weak compactnees in \(L_1(\mu , X) \), Glasgow Math. J., 1977, vol. 18, no. 1, pp. 87–91.

    Article  MathSciNet  Google Scholar 

  13. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of the Theory of Functions and Functional Analysis), Moscow: Nauka, 1976.

    Google Scholar 

  14. Ondrejat, M. and Seidler, J., On existence of progressively measurable modifications, Electron. Commun. Probab., 2013, no. 20, pp. 1–6.

  15. Levakov, A.A. and Zadvornyi, Ya.B., Existence of measurable consistent selectors of multivalued mappings, Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk, 2017, no. 1, pp. 70–78.

  16. Ferreira, M.A.M. and Filipe, J.A., Convex sets strict separation in Hilbert spaces, Appl. Math. Sci., 2014, vol. 8, no. 64, pp. 3155–3160.

    Google Scholar 

  17. Martynyuk, A.A., Kato, D., and Shestakov, A.A., Ustoichivost’ dvizheniya: metod predel’nykh uravnenii (Stability of Motion: Method of Limit Equations), Kiev: Naukova Dumka, 1990.

    Google Scholar 

  18. Da, PratoG. and Zabszyk, J., Stochastic Equations in Infinite Dimensions, Cambridge: Cambridge Univ. Press, 1992.

    Google Scholar 

  19. Gawarecki, L. and Mandrekar, V., Stochastic Differential Equations in Infinite Dimensions, Heidelberg–Dordrecht–London–New York: Spinger, 2011.

    Book  Google Scholar 

  20. Watanabe, S. and Ikeda, N., Stochastic Differential Equations and Diffusion Processes, Tokyo: Elsevier, 1981. Translated under the title: Stokhasticheskie differentsial’nye uravneniya i diffuzionnye protsessy, Moscow: Nauka, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Levakov, M. M. Vas’kovskii or Ya. B. Zadvornyi.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levakov, A.A., Vas’kovskii, M.M. & Zadvornyi, Y.B. Existence of Martingale Solutions of Stochastic Differential Inclusions of Parabolic Type in a Hilbert Space. Diff Equat 56, 109–119 (2020). https://doi.org/10.1134/S0012266120010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266120010127

Navigation