Skip to main content
Log in

Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The paper describes quasi-periodic and aperiodic variations in the phase and amplitude of radio waves of LF and VLF ranges, which accompanied the flight and explosion of the Chelyabinsk meteoroid. Quasi-periodic variations in the phase have been explained by the generation of acoustic-gravity waves in the atmosphere, which modulate the electron density in the ionosphere and the phase of radio waves. Aperiodic variations in the phase and amplitude of radio waves are associated with an increase in the electron density in the lower ionosphere (at altitudes of 65–70 km). This increase was most likely caused by the interactions of subsystems in the Earth–atmosphere–ionosphere–magnetosphere system or, more correctly, by the precipitation of high-energy electrons from the magnetosphere into the lower ionosphere, which was stimulated by the flight and explosion of a cosmic body. According to the estimates, the density of the flux of electrons with energies of 100 KeV should be on the order of 106 m–2 s–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernogor, L.F. and Rozumenko, V.T., The physical effects associated with Chelyabinsk meteorite’s passage, Probl. At. Sci. Technol., 2013, vol. 86, no 4, pp. 136–139.

    Google Scholar 

  2. Chernogor, L.F., Plasma, electromagnetic, and acoustic effects of the Chelyabinsk meteorite, Inzh. Fiz., 2013, no. 8, pp. 23–40.

    Google Scholar 

  3. Chernogor, L.F., Main effects of the Chelyabinsk meteorite fall: Physico–mathematical modeling results, in Meteorit Chelyabinsk—god na Zemle: materialy Vserossiiskoi nauchnoi konferentsii (The Chelyabinsk Meteorite—A Year on the Earth: Proceedings of Scientific Conference) Chelyabinsk, 2014, pp. 229–265.

    Google Scholar 

  4. Gokhberg, M.B., Ol’shanskaya, E.V., Steblov, G.M, and Shalimov, S.L., The Chelyabinsk meteorite: Ionospheric response based on GPS measurements, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 948–952.

    Article  ADS  Google Scholar 

  5. Givishvili, G.V., Leshchenko, L.N., Alpatov, V.V., et al., Ionospheric effects induced by the Chelyabinsk meteor, Sol. Syst. Res., 2013, vol. 47, no. 4, pp. 280–287.

    Article  ADS  Google Scholar 

  6. Alpatov, V.V., Burov, V.A., Vagin, Yu.P., et al., Geofizicheskie usloviya pri vzryve Chelyabinskogo (Chebarkul’skogo) meteoroida 15.02.2013 g. (The Geophysical Conditions at the Chelyabinsk (Chebarkul’) Meteoroid Airburst on February 15, 2013), Moscow: FGBU IPG, 2013.

    Google Scholar 

  7. Tertyshnikov, A.V., Alpatov, V.V., Glukhov, Ya.V., and Davidenko, D.V., Regional disturbances of the ionosphere and positioning errors of the land-based navigation receiver during the airburst of the Chelyabinsk (Chebarkul’) meteoroid on February 15, 2013, Geliogeofiz. Issled., 2013, no. 5, pp. 65–73.

    Google Scholar 

  8. Givishvili, G.V., Leshchenko, L.N., Alpatov, V.V., et al., Ionospheric effects induced by the Chelyabinsk meteor, Sol. Syst. Res., 2013, vol. 47, no. 4, pp. 280–287.

    Article  ADS  Google Scholar 

  9. Danilkin, N.P., Zhuravlev, S.V., and Lapshin, V.B., On the state of the ionosphere after the passage of the Chelyabinsk meteoroid, Geliogeofiz. Issled., 2013, no. 5, pp. 54–59.

    Google Scholar 

  10. Perevalova, N.P., Shestakov, N.V., Zhupityaeva, A.S., et al., Total electron content variations in the ionosphere during the fall of the Chelyabinsk meteoroid, Meteorit Chelyabinsk—god na Zemle: materialy Vserossiiskoi nauchnoi konferentsii (The Chelyabinsk Meteorite—A Year on the Earth: Proceedings of Scientific Conference), Chelyabinsk, 2014, pp. 182–190.

    Google Scholar 

  11. Kozlov, V.I., Mullayarov, V.A., Korsakov, A.A., et al., Variations in the parameters of VLF radio signals on the tracks passing within the first Fresnel zones through the area of the Chelyabinsk meteoroid airburst on February 15, 2013, Trudy XXIV Vserossiiskoi nauchnoi konferentsii “Rasprostranenie radiovoln” RRV-24 (Proceedings of the XXIV All-Russian Scientific Conference “Radio Wave Propagation” RWP-24), Irkutsk, 2014, vol. 1, pp. 245–248.

    Google Scholar 

  12. Tereshchenko, V.D., Tereshchenko, V.A., Ogloblina, O.F., and Chernyakov, S.M., The behavior of polar ionosphere after the Chelyabinsk meteorite airburst, Trudy XXIV Vserossiiskoi nauchnoi konferentsii “Rasprostranenie radiovoln” RRV-24 (Proceedings of the XXIV All-Russian Scientific Conference “Radio Wave Propagation” RWP-24), Irkutsk, 2014, vol. 2, pp. 5–8.

    Google Scholar 

  13. Ratovskii, K.G., Belinskaya, Yu.A., Kusonskii, O.A., and Stepanov, A.E., Ionospheric response to the Chelyabinsk meteorite airburst according to data of the ionosondes located in the Asiatic part of Russia, Trudy XXIV Vserossiiskoi nauchnoi konferentsii “Rasprostranenie radiovoln” RRV-24 (Proceedings of the XXIV All-Russian Scientific Conference “Radio Wave Propagation” RWP-24), Irkutsk, 2014, vol. 1, pp. 288–291.

    Google Scholar 

  14. Kalikhman, A.D., Tashchilin, A.V., and Vugmeister, B.O., Ionospheric disturbances triggered by the Chelyabinsk meteorite fall, Trudy XXIV Vserossiiskoi nauchnoi konferentsii “Rasprostranenie radiovoln” RRV-24 (Proceedings of the XXIV All-Russian Scientific Conference “Radio Wave Propagation” RWP-24), Irkutsk, 2014, vol. 1, pp. 179–181.

    Google Scholar 

  15. Kutelev, K.A. and Berngardt, O.I., Midscale wave disturbances in the ionospheric F-layer during two hours after the Chelyabinsk meteorite fall according to EKB radar data, Meteorit Chelyabinsk—god na Zemle: materialy Vserossiiskoi nauchnoi konferentsii (The Chelyabinsk Meteorite—A Year on the Earth: Proceedings of Scientific Conference), Chelyabinsk, 2014, pp. 171–181.

    Google Scholar 

  16. Berngardt, O.I., Dobrynina, A.A., Zherebtsov, G.A., et al., Geophysical phenomena accompanying the Chelyabinsk meteoroid impact, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 945–947.

    Article  ADS  Google Scholar 

  17. Chernogor, L.F. and Garmash, K.P., Geospace disturbances accompanying the fall of the Chelyabinsk meteorite, Radiofiz. Radioastron., 2013, vol. 18, no. 3, pp. 231–243.

    Google Scholar 

  18. Chernogor, L.F., Milovanov, Yu.B., Fedorenko, V.N., and Tsymbal, A.M., Satellite observations of ionospheric disturbances caused by the fall of the Chelyabinsk meteorite, Kos. Nauka Tekhnol., 2013, vol. 19, no. 6, pp. 38–46.

    Article  Google Scholar 

  19. Chernogor, L.F. and Barabash, V.V., Ionospheric disturbances accompanying the flight of the Chelyabinsk object, Kinematika Fiz. Nebesnykh Tel, 2014, vol. 30, no. 3, pp. 27–42.

    Google Scholar 

  20. Chernogor, L.F., Ionospheric effects of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 3, pp. 353–368.

    Article  ADS  Google Scholar 

  21. Chernogor, L.F., Physics of the Earth, atmosphere, and geospace in the light of the system paradigm, Radiofiz. Radioastron., 2003, vol. 8, no. 1, pp. 59–106.

    Google Scholar 

  22. Chernogor, L.F. and Rozumenko, V.T., Earth–atmosphere–geospace as an open nonlinear dynamical system, Radiofiz. Radioastron., 2008, vol. 13, no. 2, pp. 120–137.

    Google Scholar 

  23. Chernogor, L.F., The Earth–atmosphere–geospace system: Main properties and processes, Int. J. Remote Sens., 2011, vol. 32, no. 11, pp. 3199–3218.

    Article  ADS  Google Scholar 

  24. Chernogor, L.F., Geospace physics and space weather: System approach, advances, and research strategy, in Perspektivy kosmicheskikh issledovanii Ukrainy (Space Research Prospects in Ukraine), Kiev: Akademperiodika, 2011, pp. 55–61.

    Google Scholar 

  25. Chernogor, L.F. and Domnin, I.F., Fizika geokosmicheskikh bur’ (Physics of Geospace Storms), Kharkov: KhNU im. V.N. Karazina, 2014.

    Google Scholar 

  26. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., Wave-like processes in the ionosphere under quiet and disturbed conditions. 1. Kharkov incoherent scatter radar observations, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 2, pp. 183–198.

    Article  ADS  Google Scholar 

  27. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., Wave-like processes in the ionosphere under quiet and disturbed conditions. 2. Analysis of observations and simulation, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 2, pp. 199–208.

    Article  ADS  Google Scholar 

  28. Afraimovich, E.L., First GPS-TEC evidence for the wave structure excited by the solar terminator, Earth Planets Space, 2008, vol. 60, pp. 895–900.

    Article  ADS  Google Scholar 

  29. Gossard, E.E. and Hook, W.H., Waves in the Atmosphere, Amsterdam: Elsevier, 1975.

    Google Scholar 

  30. Chernogor, L.F., Mechanisms for generating oscillations in the infrasound frequency range in the upper atmosphere by periodic high-power radio transmissions, Radiofiz. Radioastron., 2012, vol. 17, no. 3, pp. 240–252.

    Google Scholar 

  31. Chernogor, L.F., Fizika i ekologiya katastrof (Physics and Ecology of Catastrophes), Kharkov: KhNU im. V.N. Karazina, 2012.

    Google Scholar 

  32. Davies, K., Ionospheric Radio, London: Peter Peregrinus, 1990.

    Book  Google Scholar 

  33. Dolukhanov, M.P., Rasprostranenie radiovoln (Radio Wave Propagation), Moscow: Svyaz’, 1972.

    Google Scholar 

  34. Wratt, D.S., Ionization enhancement in the middle latitude D-region due to precipitating high energy electrons, J. Atmos. Terr. Phys., 1976, vol. 38, no. 5, pp. 511–516.

    Article  ADS  Google Scholar 

  35. Chernogor, L.F., Garmash, K.P., and Rozumenko, V.T., Flux parameters of energetic particles affecting the middle latitude lower ionosphere, radio physics and radio astronomy, Radiofiz. Radioastron., 1998, vol. 3, no. 2, pp. 191–197.

    Google Scholar 

  36. Tadokoro, H., Tsuchiya, F., Miyoshi, Y., et al., Electron flux enhancement in the inner radiation belt during moderate magnetic storms, Ann. Geophys., 2007, vol. 25, no. 6, pp. 1359–1364.

    Article  ADS  Google Scholar 

  37. Sokolov, S.N., Magnetic storms and their effects in the lower ionosphere: Differences in storms of various types, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 741–752.

    Article  ADS  Google Scholar 

  38. Chernogor, L.F., Fizicheskie effekty solnechnykh zatmenii v atmosfere i geokosmose (Physical Effects of Solar Eclipses in the Atmosphere and Geospace), Kharkov: KhNU im. V.N. Karazina, 2013.

    Google Scholar 

  39. Chernogor, L.F., Fizika moshchnogo radioizlucheniya v geokosmose (Physics of Strong Radio Emission in Geospace), Kharkov: KhNU im. V.N. Karazina, 2014.

    Google Scholar 

  40. Chernogor, L.F., Radiofizicheskie i geomagnitnye effekty startov raket (Radiophysical and Geomagnetic Effects of Rocket Launches), Kharkov: KhNU im. V.N. Karazina, 2009.

    Google Scholar 

  41. Chernogor, L.F. and Blaunstein, N., Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment, Boca Raton: CRC Press, 2013.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Original Russian Text © L.F. Chernogor, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 5, pp. 342–352.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F. Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body. Cosmic Res 55, 323–332 (2017). https://doi.org/10.1134/S0010952517050033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517050033

Navigation