Skip to main content
Log in

Mass Spectrometric Study of Composition of Gaseous Products of Laser Pyrolysis of Coal

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The effect of pulsed laser radiation (1064 nm, 120 \(\mu\)s, 10 Hz, and 1.5 J/cm2) on coal samples in argon is under study. The gaseous products of coal pyrolysis is analyzed using mass spectrometry. The dependences of the composition of gaseous pyrolysis products of coal samples and the proportion of reacted samples on their technical and genetic characteristics are revealed. Data on the yield of combustible gases per unit mass of reacted coal samples are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. B. P. Aduev, D. R. Nurmukhametov, Y. V. Kraft, and Z. R. Ismagilov, “Glow Spectral Characteristics of the Hard Coal Particles Surface during the Action of Laser Pulses in the Free Generation Mode," Opt. Spectrosc. 128 (12), 2008–2014 (2020); DOI: 10.1134/S0030400X20120838.

    Article  ADS  Google Scholar 

  2. B. P. Aduev, Ya. V. Kraft, D. R. Nurmukhametov, and Z. R. Ismagilov, “Ignition of Coals of Different Stages of Metamorphism by Laser Pulses in the Free Generation Mode," Khim. Interes. Ust. Razv. 27 (6), 549–555 (2019); DOI: 10.15372/KhUR2019172.

    Article  Google Scholar 

  3. B. P. Aduev, D. R. Nurmukhametov, Y. V. Kraft, and Z. R. Ismagilov, “Ignition of Different Metamorphic Grade Coals by Free-Running Laser Pulses," Opt. Spectrosc. 128 (3), 429–435 (2020); DOI: 10.1134/S0030400X20030029.

    Article  ADS  Google Scholar 

  4. B. P. Aduev, D. R. Nurmukhametov, Y. V. Kraft, and Z. R. Ismagilov, “Energy Characteristics of Ignition and Flame Glow Kinetics of Dispersed Coal Particles at Different Stages of Metamorphism under the Influence of Laser Pulses," Khim. Interes. Ust. Razv. 28 (6), 535–543 (2020); DOI: 10.15372/KhUR2020260.

  5. H. Kobayashi, J. B. Howard, and A. F. Sarofim, “Coal Devolatilization at High Temperatures," Symp. (Int.) Combust. 16 (1), 411–425 (1977); DOI: 10.1016/S0082-0784(77)80341-X.

    Article  Google Scholar 

  6. L. L. Gasner, A. O. Denloye, and T. M. Regan, “Microwave and Conventional Pyrolysis of a Bituminous Coal," Chem. Eng. Commun. 48 (4–6), 349–354 (1986); DOI: 10.1080/00986448608910023.

    Article  Google Scholar 

  7. S. Singh, V. B. Neculaes, V. Lissianski, et al., “Microwave Assisted Coal Conversion," Fuel 140, 495–501 (2015); DOI: 10.1016/j.fuel.2014.09.108.

    Article  Google Scholar 

  8. R. E. Gannon, V. J. Krukonis, and T. Schoenberg, “Conversion of Coal to Acetylene in Arc-Heated Hydrogen," Ind. Eng. Chem. Prod. Res. Dev. 9 (3), 343–347 (1970); DOI: 10.1021/i360035a015.

    Article  Google Scholar 

  9. J. Ma, B. Su, G. Wen, et al., “Pyrolysis of Pulverized Coal to Acetylene in Magnetically Rotating Hydrogen Plasma Reactor," Fuel Process. Technol. 167, 721–729 (2017); DOI: 10.1016/j.fuproc.2017.06.022.

    Article  Google Scholar 

  10. T. Kodama, Y. Kondoh, T. Tamagawa, et al., “Fluidized Bed Coal Gasification with CO2 under Direct Irradiation with Concentrated Visible Light," Energy Fuels 16 (5), 1264–1270 (2002); DOI: 10.1021/ef020053x.

    Article  Google Scholar 

  11. A. F. Granger and W. R. Ladner, “The Flash Heating of Pulverized Coal," Fuel 49 (1), 17–25 (1970); DOI: 10.1016/0016-2361(70)90004-9.

    Article  Google Scholar 

  12. L. Arribas, N. Arconada, C. González-Fernández, et al., “Solar-Driven Pyrolysis and Gasification of Low-Grade Carbonaceous Materials," Int. J. Hydrogen Energy 42 (19), 13598–13606 (2017); DOI: 10.1016/j.ijhydene.2017.02.026.

    Article  Google Scholar 

  13. W. K. Joy, W. R. Ladner, and E. Pritchard, “Laser Heating of Coal Particles in the Source of Time-of-Flight Mass Spectrometer," Nature 217, 640–641 (1968); DOI: 10.1038/217640a0.

    Article  ADS  Google Scholar 

  14. F. S. Karn, R. A. Friedel, A. G. Sharkey, Jr., “Distribution of Gaseous Products from Laser Pyrolysis of Coals of Various Ranks," Carbon 5 (1), 25–32 (1967); DOI: 10.1016/0008-6223(67)90102-9.

    Article  Google Scholar 

  15. J. L. Shultz and A. G. Sharkey, Jr. “Gases from Laser Irradiation of Coal: Effect of Argon, Nitrogen and Other Atmospheres," Carbon 5 (1), 57–59 (1967); DOI: 10.1016/0008-6223(67)90106-6.

    Article  Google Scholar 

  16. R. L. Hanson, D. Brookins, and N. E. Vanderborgh, “Stoichiometric Analysis of Oil Shales by Laser-Pyrolysis Gas Chromatography," Anal. Chem. 48 (14), 2210–2213 (1976); DOI: 10.1021/ac50008a040.

    Article  Google Scholar 

  17. R. L. Hanson, N. E. Vanderborgh, and D. G. Brookins, “Characterization of Coal by Laser Pyrolysis Gas Chromatography," Anal. Chem. 49 (3), 390–395 (1977); DOI: 10.1021/ac50011a016.

    Article  Google Scholar 

  18. S. A. Stout and K. Hall, “Laser Pyrolysis-Gas Chromatography/Mass Spectrometry of Two Synthetic Organic Polymers," J. Anal. Appl. Pyrolysis 21 (1/2), 195–205 (1991); DOI: 10.1016/0165-2370(91)80025-4.

    Article  Google Scholar 

  19. A. T. Pyatenko, S. V. Bukhman, V. S. Lebedinskii, et al., “Experimental Investigation of Single Coal Particle Devolatilization by Laser Heating," Fuel 71 (6), 701–704 (1992); DOI: 10.1016/0016-2361(92)90175-N.

    Article  Google Scholar 

  20. W. Maswadeh, N. S. Arnold, W. H. McClennen, et al., “Development of a Laser Devolatilization Gas Chromatography/Mass Spectrometry Technique for Single Coal Particles," Energy Fuels 7 (6), 1006–1012 (1993); DOI: 10.1021/ef00042a044.

    Article  Google Scholar 

  21. D. Seyitliyev, K. Kholikov, B. Grant, et al., “Laser-Induced Hydrogen Generation from Graphite and Coal," Int. J. Hydrogen Energy 42 (42), 26277–26288 (2017); DOI: 10.1016/j.ijhydene.2017.08.149.

    Article  Google Scholar 

  22. P. F. Greenwood, S. C. George, M. A. Wilson, and K. J. Hall, “A New Apparatus for Laser Micropyrolysis—Gas Chromatography/Mass Spectrometry," J. Anal. Appl. Pyrolysis 38 (1–2), 101–118 (1996); DOI: 10.1016/S0165-2370(96)00948-5.

    Article  Google Scholar 

  23. P. F. Greenwood, S. C. George, and K. Hall, “Applications of Laser Micropyrolysis–Gas Chromatography–Mass Spectrometry," Org. Geochem. 29 (5–7), 1075–1089 (1998); DOI: 10.1016/S0146-6380(98)00101-6.

    Article  ADS  Google Scholar 

  24. P. F. Greenwood, J. D. H. van Heemst, E. A. Guthrie, and P. G. Hatcher, “Laser Micropyrolysis GC–MS of Lignin," J. Anal. Appl. Pyrolysis 62 (2), 365–373 (2002); DOI: 10.1016/S0165-2370(01)00135-8.

    Article  Google Scholar 

  25. S. Armitage, S. Saywell, C. Roux, et al., “The Analysis of Forensic Samples Using Laser Micro-Pyrolysis Gas Chromatography Mass Spectroscopy," J. Forensic Sci. 46 (5), 1043–1052 (2001); DOI: 10.1520/JFS15098J.

    Article  Google Scholar 

  26. P. R. Solomon, T. H. Fletcher, and R. J. Pugmire, “Progress in Coal Pyrolysis," Fuel. 72 (5), 587–597 (1993); DOI: 10.1016/0016-2361(93)90570-R.

    Article  Google Scholar 

  27. G. A. Galkin and V. N. Grigor’ev, “Laser Pyrolysis of Brown Coal in a Low-Energy Range," Khim. Tv. Top., No. 5, 76–83 (1981).

  28. F. S. Karn, R. A. Friedel, and A. S. Sharkey, “Coal Pyrolysis Using Laser Irradiation," Fuel 48 297–303 (1969).

    Google Scholar 

  29. F. S. Karn, R. A. Friedel, and A. S. Sharkey, “Studies of the Solid and Gaseous Products from Laser Pyrolysis of Coal," Fuel 51 (2), 113–115 (1972); DOI: 10.1016/0016-2361(72)90059-2.

    Article  Google Scholar 

  30. Y. Li, F. Hua, H. An, and Y. Cheng, “Experimental Study of Laser Pyrolysis of Coal and Residual Oil," Fuel 283, 119290 (2021); DOI: 10.1016/j.fuel.2020.119290.

    Article  Google Scholar 

  31. Ya. V. Kraft, D. R. Nurmukhametov, B. P. Aduev, and Z. R. Ismagilov, “Pyrolysis of Kaichak Brown Coal under the Influence of Laser Radiation," Vest. Kuzbass. Gos. Tekh. Univ., No. 3, 5–16 (2019); DOI: 10.26730/1999-4125-2019-3-5-15.

    Article  Google Scholar 

  32. N. V. Nelyubina, Ya. V. Kraft, S. Yu. Lyrshchikov, and Z. R. Ismagilov, “Correlation Between the Energy Threshold of Laser Ignition of Coals and the Degree of Their Aromaticity," Khim. Interes. Ust. Razv. 29 (5), 591–596 (2021); DOI: 10.15372/KhUR2021335.

    Article  Google Scholar 

  33. A. F. Bulat, S. P. Mineev, and A. A. Prusova, “Generating Methane Adsorption under Relaxation of Molecular Structure of Coal," J. Mining Sci. 52, 70–77 (2016); DOI: 10.1134/S1062739116010149.

    Article  Google Scholar 

  34. W. Geng, T. Nakajima, H. Takanashi, and A. Ohki, “Analysis of Carboxyl Group in Coal and Coal Aromaticity by Fourier Transform Infrared (FT-IR) Spectrometry," Fuel 88 (1), 139–144 (2009); DOI: 10.1016/j.fuel.2008.07.027.

    Article  Google Scholar 

  35. A. A. Agroskin and V. B. Gleibman, Thermophysics of Solid Fuel (Nedra, Moscow, 1980) [in Russian].

    Google Scholar 

  36. A. A. Agroskin and L. V. Lovetskii, “Thermal Diffusivity and Thermal Conductivity of Donbass and Kuzbass Hard Coals," Khim. Tv. Top., No. 6, 3–10 (1969).

  37. J. Deng, S.-J. Ren, Y. Xiao, et al., “Thermal Properties of Coals with Different Metamorphic Levels in Air Atmosphere," Appl. Therm. Eng. 143, 542–549 (2018); DOI: 10.1016/j.applthermaleng.2018.07.117.

    Article  Google Scholar 

  38. M. E. Dry, “The Fischer–Tropsch Process: 1950–2000," Catal. Today 71 (3/4), 227–241 (2002); DOI: 10.1016/S0920-5861(01)00453-9.

    Article  Google Scholar 

  39. Y. Matsumura and T. Nakamori, “Steam Reforming of Methane over Nickel Catalysts at Low Reaction Temperature," Appl. Catal. A: General. 258 (1), 107–114 (2004); DOI: 10.1016/j.apcata.2003.08.009.

    Article  Google Scholar 

  40. J. U. Jung, W. Nam, K. J. Yoon, and G. Y. Han, “Hydrogen Production by Catalytic Decomposition of Methane over Carbon Catalysts in a Fluidized Bed," Korean J. Chem. Eng. 24, 674–678 (2007); DOI: 10.1007/s11814-007-0024-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Kraft.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 3, pp. 89-99. https://doi.org/10.15372/FGV20230308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraft, Y.V., Aduev, B.P., Volkov, V.D. et al. Mass Spectrometric Study of Composition of Gaseous Products of Laser Pyrolysis of Coal. Combust Explos Shock Waves 59, 334–343 (2023). https://doi.org/10.1134/S0010508223030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223030085

Keywords

Navigation