Skip to main content
Log in

Acceleration of Dispersed Particles by Gas Detonation Productions in an Expanding Channel

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes an experimental study and a quasi-one-dimensional calculation of acceleration of dispersed particles by gas detonation products in an expanding channel. The calculations show the possibility of a significant increase in the velocity of powder particles due to the conical expansion of a detonation channel. For particles with sizes of 30–40 \(\mu\)m at cone angles of 2–4°, the maximum velocity increase reaches 35–60%. A method is developed for fixing the radiation of a packet of dispersed particles accelerated in a detonation channel by a photosensor, which makes it possible to measure the particle velocity with an accuracy of \(\pm\)5%. The calculation results are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. P. C. Huang, J. Heberlein, and E. Pfender, “Particle Behavior in a Two-Fluid Turbulent Plasma Jet," Surf. Coat. Technol. 73 (3), 142–151 (1995); DOI: 10.1016/0257-8972(94)02382-4.

    Article  Google Scholar 

  2. G. Mariaux, C. Baudry, and A. M. Vardelle, 3-D Modeling of Gas Flow and Particle Spray Jet in Plasma Spraying (Proc. ITSC, Singapore, 2001).

  3. I. P. Gulyaev and O. P. Solonenko, “Modelling of the Behavior of Hollow ZrO2 Particles in Plasma Jet with Regard to Their Thermal Expansion," Teplofiz. Aeromekh. 20 (6), 789–802 (2013) [Thermophys. Aeromech. 20 (6), 769–782 (2013)].

    Article  ADS  Google Scholar 

  4. S. V. Klinkov, V. F. Kosarev, A. A. Sova, and I. Smurov, “Calculation of Particle Parameters for Cold Spraying of Metal–Ceramic Mixtures," J. Therm. Spray Technol. 18 (5/6), 944–956 (2009); DOI: 10.1007/s11666-009-9346-x.

    Article  ADS  Google Scholar 

  5. M. Li and P. D. Christofides “Modeling and Analysis of HVOF Thermal Spray Process Accounting for Powder Size Distribution," Chem. Eng. Sci. 58 (3–6), 849–857 (2003); DOI: 10.1016/S0009-2509(02)00616-4.

    Article  Google Scholar 

  6. M. Li, D. Shi, and P. D. Christofides, “Model-Based Estimation and Control of Particle Velocity and Melting in HVOF Thermal Spray," Chem. Eng. Sci. 59 (22–23), 5647–5656 (2004); DOI: 10.1016/j.ces.2004.06.049.

    Article  Google Scholar 

  7. V. M. Boiko, V. V. Grigor’ev, S. A. Zhdan, et al., “Acceleration and Heating of a Metal Particle Behind a Detonation Wave," Fiz. Goreniya Vzryva 19 (4), 133–136 (1983) [Combust., Expl., Shock Waves 19 (4), 496–499 (1983)].

    Article  Google Scholar 

  8. E. S. Prokhorov, “Acceleration and Heating of Fine Particles by Overcompressed Detonation Waves," in Dynamics of Continuous Media, No. 68 (Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1984), pp. 108–115.

  9. S. A. Zhdan, “Numerical Simulation of Two-Phase Flow Dynamics in a Detonator Barrel with Account for Particle Crushing," in Using Detonation in Engineering Processes (Lavrent’ev Institute of Hydrodynamics, Siberian Branch, USSR Acad. of Sci., Novosibirsk, 1986).

  10. S. A. Karamysheva and E. S. Prokhorov, “Impact of the Shape and Degree of Filling of a Barrel by an Explosive Mixture on Particle Acceleration Parameters in Detonation Sprayers," in Using Detonation in Engineering Processes (Lavrent’ev Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1986).

  11. G. Mauer, R. Vaßen, and D. Stöver, “Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications," J. Therm. Spray Technol. 20 (3), 391–406 (2011).

    Article  ADS  Google Scholar 

  12. G. Mauer, R. Vaßen, and D. Stöver, “Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-Flight Measurements of Atmospheric Plasma-Sprayed Particles," Int. J. Thermophys. 29, 764–786 (2008); DOI: 10.1007/s10765-008-0422-0.

    Article  ADS  Google Scholar 

  13. I. P. Gulyaev, A. V. Dolmatov, M. Yu. Kharlamov, et al., “Arc-Plasma Wire Spraying: An Optical Study of Process Phenomenology," J. Therm. Spray Technol. 24 (11), 1566–1573 (2015); DOI: 10.1007/s11666-015-0356-6.

    Article  ADS  Google Scholar 

  14. A. Sova, V. F. Kosarev, A. Papyrin, and I. Smurov, “Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings," J. Therm. Spray Technol. 20, 285–291 (2011).

    Article  ADS  Google Scholar 

  15. S. V. Klinkov, V. F. Kosarev, and N. S. Ryashin, “Comparison of Experiments and Computations for Cold Gas Spraying Through a Mask. Part 2," Teplofiz. Aeromekh. 24 (2), 221–232 (2017) [Thermophys. Aeromech. 24 (2), 213–224 (2017)].

    Article  ADS  Google Scholar 

  16. D. Zois, T. Wentz, R. Dey, et al., “Simplified Model for Description of HVOF NiCr Coating Properties through Experimental Design and Diagnostic Measurements," J. Therm. Spray Technol. 22 (2–3), 299–315 (2013); DOI: 10.1007/s11666-013-9888-9.

    Article  ADS  Google Scholar 

  17. V. Ulianitsky, A. Shtertser, S. Zlobin, and I. Smurov, “Computer-Controlled Detonation Spraying: From Process Fundamentals Toward Advanced Applications," J. Therm. Spray Technol. 20 (4), 791–801 (2011); DOI: 10.1007/s11666-011-9649-6.

    Article  ADS  Google Scholar 

  18. V. K. Champagne (Jr.), D. J. Helfritch, S. P. G. Dinavahi, and P. F. Leyman, “Theoretical and Experimental Particle Velocity in Cold Spray," J. Therm. Spray Technol. 20 (3), 425–431 (2011); DOI: 10.1007/s11666-010-9530-z.

    Article  ADS  Google Scholar 

  19. G. Nasif, R. M. Barron, R. Balachandar, and J. Villafuerte, “Numerical Assessment of Miniaturized Cold Spray Nozzle for Additive Manufacturing," Int. J. Numer. Methods Heat Fluid Flow 29 (7), 2277–2296 (2019); DOI: 10.1108/HFF-10-2018-0553.

    Article  Google Scholar 

  20. H. Jafari, S. Emami, and Y. Mahmoudi, “Numerical Investigation of Dual-Stage High Velocity Oxy-Fuel (HVOF) Thermal Spray Process: A Study on Nozzle Geometrical Parameters," Appl. Therm. Eng. 111, 745–758 (2017); DOI: 10.1016/j.applthermaleng.2016.09.145.

    Article  Google Scholar 

  21. I. S. Batraev, E. S. Prokhorov, and V. Yu. Ul’yanitskii, “Acceleration and Heating of Powder Particle by Gas Detonation Products in Channels with a Conical Passage," Fiz. Goreniya Vzryva 50 (3), 78–86 (2014) [Combust., Expl., Shock Waves 50 (3), 315–322 (2014)].

    Article  Google Scholar 

  22. I. S. Batraev and E. S. Prokhorov, “Improvement of the Detonation Spraying Technology by Profiling of the Detonator Barrel," Uproch. Tekhnol. Pokr. 14 (6), 252–256 (2018).

    Google Scholar 

  23. V. Yu. Ul’yanitskii, “CCDS2000 Is the New Generation Detonation Spraying Equipment," Uproch. Tekhnol. Pokr., No. 10, 36–41 (2013).

  24. I. S. Batraev, A. A. Vasil’ev, V. Yu. Ul’yanitskii, et al., “Investigation of Gas Detonation in Over-Rich Mixtures of Hydrocarbons with Oxygen," Fiz. Goreniya Vzryva 54 (2), 89–97 (2018) [Combust., Expl., Shock Waves 54 (2), 207–215 (2018)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Batraev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 5, pp. 86-95.https://doi.org/10.15372/FGV20210508.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batraev, I.S., Prokhorov, E.S. & Ul’yanitskii, V.Y. Acceleration of Dispersed Particles by Gas Detonation Productions in an Expanding Channel. Combust Explos Shock Waves 57, 588–596 (2021). https://doi.org/10.1134/S0010508221050087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221050087

Keywords

Navigation