Skip to main content
Log in

Synthesis of the Ni–Al–C Composite with Multilayer Carbon Nanostructures by an Electrothermal Explosion under Pressure

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A composite material based on the Ni–Al–C system is synthesized by the method of an electrothermal explosion at a pressure of 96 MPa. During the electrothermal explosion in a reactive powder medium (Ni + Al + C), a Ni- and Al-based melt is formed, in which carbon dissolves. In the process of crystallization of the final product, carbon, due to its low solubility in NiAl, is located on the surface of intermetallic grains of NiAl in the form of multilayer graphite nanofilms 50–80 nm thick and fills the intergranular space. The microhardness of the synthesized material is 3084 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. J. P. Rocher, J. M. Quenisset, and R. Naslain, “A New Casting Process for Carbon (or SiC-based) Fibre-Aluminium Matrix Low-Cost Composite Materials," J. Mater. Sci. Lett. 4, 1527 (1985); https://doi.org/10.1007/BF00721386.

  2. K. Honjo and A. Shindo, “Influence of Carbide Formation on the Strength of Carbon Fibers on Which Silicon and Titanium Have Been Deposited," J. Mater. Sci. 21, 2043 (1986); https://doi.org/10.1007/BF00547945.

  3. T. W. Chou et al., “Fibre-Reinforced Metal-Matrix Composites," Composites 16, 187–206 (1985); http://dx.doi.org/10.1016/0010-4361(85)90603-2.

  4. V. K. Portnoi, A. V. Leonov, A. I. Logacheva, and A. V. Logachev, “Mechanochemical Synthesis, Compacting of Intermetallic Alloys with Nanocrystalline Elements in the Substructure," Izv. Ross. Akad. Nauk, Ser. Fiz. 76 (1), 71–73 (2012).

  5. V. K. Portnoi, A. V. Leonov, A. V. Logachev, et al., “Mechanochemical Synthesis As a Method of Carbon Insertion into the Ni3Al Intermetallic Compound," Fiz. Metall. Metalloved. 113 (12), 123 (2012).

  6. V. K. Portnoi, A. V. Leonov, V. I. Fadeeva, and S. A. Fedotov, “Mechanochemical Synthesis in the Ni–Al–C System," Izv. Ross. Akad. Nauk, Ser. Fiz. 71 (12), 1736–1739 (2007).

  7. J. F. Silvain, J. M. Heintz, and M. Lahaye, “Interface Analysis in Al and Al Alloys/Ni/Carbon Composites," J. Mater. Sci.35, 961 (2000); https: doi.org/10.1023/ A:1004714911693.

  8. N. A. Kochetov and A. E. Sychev, “Effect of Content and Mechanical Activation on the Combustion of a Ni–Al–C System," Fiz. Goreniya Vzryva 55 (6), 58–64 (2019) [Combust., Expl. Shock Waves55 (6), 686–691 (2019); DOI: 10.1134/S001050821906008X].

  9. A. E. Sytschev, N. A. Kochetov, S. G. Vadchenko, et al., “Processing of Ni–Al Intermetallic with 2D Carbon Components," Mater. Chem. Phys. 238 (1), 121898 (2019); DOI: 10.1016/ j.matchemphys.2019.121898.

  10. A. V. Shcherbakov, V. Yu. Barinov, A. S. Shchukin, et al., “Synthesis of the TiB2–30CrB Composite by the Method of the Electrothermal Explosion under Pressure," Fund. Issl., No. 11-2, 344–349 (2017).

  11. V. A. Shcherbakov, A. V. Shcherbakov, M. I. Alymov, et al., “Obtaining TiB2–CrB Composites by the Method of the Electrothermal Explosion under Pressure," Fund. Issl., No. 2, 39–45 (2018).

  12. A. V. Shcherbakov, V. A. Shcherbakov, V. Yu. Barinov, et al., “Influence of the Mechanical Activation of Reaction Mixture on the Formation of Microstructure of ZrB2–CrB Composites Obtained by Electrothermal Explosions under Pressure," Refract. Ind. Ceram. 60 (2), 223–226 (2019); DOI: 10.1007/s11148-019-00340-y.

  13. X. Liu, X. Song, and J. Zhang, “Current Distribution and Neck Growth during Spark Plasma Sintering Conductive Powder," Int. J. Comput. Aided Eng. Technol. 1 (1), 94–104 (2008); DOI: 10.1504/IJCAET.2008.021258.

  14. E. A. Olevsky and D. V. Dudina, Field-Assisted Sintering: Science and Applications (Springer, 2018), p. 425; https://doi.org/10.1007/ 978-3-319-76032-2.

  15. A. G. Gasparyan and A. S. Shteinberg, “Macrokinetics of Reaction and Thermal Explosion in Ni and Al Powder Mixtures," Fiz. Goreniya Vzryva 24 (3), 67–74 (1988) [Combust., Expl., Shock Waves 24 (3), 324–330 (1988)].

  16. M. I. Shilyaev, V. E. Borzykh, A. R. Dorokhov, and V. E. Ovcharenko, “Determination of Thermokinetic Parameters from the Inverse Problem of an Electrothermal Explosion," Fiz. Goreniya Vzryva 28 (3), 53–57 (1992) [Combust., Expl., Shock Waves28 (3), 258–262 (1992)].

  17. X. He, X. Xu, J. Han, and J. V. Wood, “Kinetic Parameters of the Thermal Explosion Reaction of Ni–Al–Fe System," J. Mater. Sci. Lett. 18 (15), 1201–1202 (1999).

  18. V. Yu. Filimonov, M. A. Korchagin, V. V. Evstigneev, and N. Z. Lyakhov, “Anomalous Reduction of the Activation Energy and Temperature of the Thermal Explosion Initiated in a Mechanically Activated 3Ni + Al Composition," Dokl. Akad. Nauk 426 (6), 754–757 (2009).

  19. A. S. Shteinberg, Y. Lin, S. F. Son, and A. S. Mukasyan, “Kinetics of High Temperature Reaction in Ni–Al System: Influence of Mechanical Activation," J. Phys. Chem. A 114 (20), 6111–6116 (2010); DOI: 10.1021/jp1018586.

  20. V. E. Ovcharenko and O. V. Lapshin, “Self-Propagating High-Temperature Synthesis of a Ni3Al Intermetallic Compound under Pressure," Fiz. Goreniya Vzryva 38(6), 71–75 (2002) [Combust., Expl., Shock Waves 38 (6), 670–674 (2002)].

  21. L. Thiers, A. S. Mukasyan, and A. Varma, “Thermal Explosion in Ni–Al System: Influence of Reaction Medium Microstructure," Combust. Flame 131 (1/2), 198–209 (2002); DOI: 10.1016/S0010-2180(02)00402-9.

  22. J. D. E. White, R. V. Reeves, S. F. Son, and A. S. Mukasyan, “Thermal Explosion in Al–Ni System: Influence of Mechanical Activation," J. Phys. Chem. A 113 (48), 13541–13547 (2009); DOI: 10.1021/jp905175c.

  23. R. Orru, R. Licheri, A. M. Locci, et al., “Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering," Mater. Sci. Eng.: R: Reports 63 (4–6), 127–287 (2009); DOI: 10.1016/j.mser.2008.09.003.

  24. A. S. Mukasyan, J. D. E. White, D. Y. Kovalev, et al., “Dynamics of Phase Transformation During Thermal Explosion in the Al—Ni System: Influence of Mechanical Activation," Physica B: Cond. Matter.405 (2), 778–784 (2010); DOI: 10.1016/j.physb.2009.10.001.

  25. A. S. Shchukin, A. V. Shcherbakov, A. E. Sychev, and V. A. Shcherbakov, “Synthesis of a Composite Based on the W–Ni–Al System by the Method of the Electrothermal Explosion under Pressure," Pis’ma Mater. 8 (3), 274–277 (2018); DOI: 10.22226/2410-3535-2018-3-274-277.

  26. A. S. Shchukin, D. Yu. Kovalev, A. E. Sychev, and A. V. Shcherbakov, “Obtaining New Intermetallic Phases in the Ta–Ni–Al System," Persp. Mater., No. 10, 5–15 (2019); DOI: 10.30791/1028-978X-2019-10-5-13.

  27. A. E. Sychev et al., “Formation of Graphene Structures in the Material Based on Ni–Al–C Synthesized by the Method of Spark Plasma Sintering," in Synthesis and Consolidation of Powder Materials, Abstr. of Int. Conf., Chernogolovka, October 23–26, 2018 (Torus Press, Moscow, 2018), pp. 668–671; DOI: 10.30826/SCPM2018137.

  28. N. N. Shipkov, V. I. Kostikov, E. I. Neproshin, and A. V. Demin,Recrystallized Graphite (Metallurgiya, Moscow, 1979) [in Russian].

  29. P. A. Rebinder and E. D. Shchukin, “Surface Phenomena in Solids in Deformation and Fracture Processes," Usp. Fiz. Nauk108 (9), 3–42 (1972).

  30. S. M. Kozlov, F. Vines, and A. Gorling, “Bonding Mechanisms of Graphene on Metal Surfaces," J. Phys. Chem. C 116, 7360 (2012).

  31. N. C. Bartelt and K. F. McCarty, “Graphene Growth on Metal Surfaces," Graph. Fund. Funct. 37 (12), 1158–1165 (2012); DOI: https://doi.org/ 10.1557/mrs.2012.237.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sychev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 2, pp. 75–81.https://doi.org/10.15372/FGV20210208.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, A.V., Sychev, A.E. Synthesis of the Ni–Al–C Composite with Multilayer Carbon Nanostructures by an Electrothermal Explosion under Pressure. Combust Explos Shock Waves 57, 196–202 (2021). https://doi.org/10.1134/S0010508221020088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221020088

Keywords

Navigation