Skip to main content
Log in

Comparative Analysis of Boron Powders Obtained by Various Methods. I. Microstructure and Oxidation Parameters during Heating

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes a study of boron powders and powder compounds, obtained by various methods, including metallothermal, electrolytic, and borane cracking methods. The crystal state, particle size and microstructure, presence and composition of impurities, and chemical composition of the oxide layer of boron particles are profoundly investigated. The effects of the above-mentioned characteristics on the particle oxidation parameters during heating with a constant rate are analyzed. The determining influence of chemical composition of the particle surface layer on the initial temperature of their intense oxidation is established. It is shown that the maximum increase in the mass and heat release value during oxidation of the boron powders is almost independent of microstructural features, crystal state, and chemical composition of and oxide layer thickness of the particles, and cannot serve as indicators of completeness of boron oxidation during heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramjet Rocket Engines on Solid and Pasty Fuels. Basics of Design and Experimental Development, Ed. by Yu. M. Milekhin and V. A. Sorokin (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  2. A. Gany and D. W. Netzer, “Combustion Studies of Metallized Fuels for Solid-Fuel Ramjets,” J. Propul. Power 2 (2), 423–427 (1986).

    Article  Google Scholar 

  3. R. Foelsche, R. Burton, and H. Krier, “Boron Particle Ignition and Combustion at 30–150 atm,” Combust. Flame 117 (1–2), 32–58 (1999).

    Article  Google Scholar 

  4. A. G. Korotkikh et al., “Effect of Iron and Boron Ultrafine Powders on Combustion of Aluminized Solid Propellants,” Combust. Flame 178, 195–204 (2017).

    Article  Google Scholar 

  5. S. Karmakar et al., “Effects of Rare-Earth Oxide Catalysts on the Ignition and Combustion Characteristics of Boron Nanoparticles,” Combust. Flame 160 (12), 3004–3014 (2013).

    Article  Google Scholar 

  6. L. Liu, P. Liu, and G. He, “Ignition and Combustion Characteristics of Compound of Magnesium and Boron,” J. Therm. Anal. Calorim. 121 (3), 1205–1212 (2015).

    Article  Google Scholar 

  7. J. Xi et al., “Effect of Metal Hydrides on the Burning Characteristics of Boron,” Thermochim. Acta. 597, 58–64 (2014).

    Article  Google Scholar 

  8. J. Xi et al., “Metal Oxides as Catalysts for Boron Oxidation,” J. Propul. Power 30 (1), 47–53 (2014).

    Article  Google Scholar 

  9. P. Z. Si et al., “Amorphous Boron Nanoparticles and BN Encapsulating Boron Nano-Peanuts Prepared by Arc-Decomposing Diborane and Nitriding,” J. Mater. Sci. 38 (4), 689–692 (2003).

    Article  ADS  Google Scholar 

  10. J. D. Casey and J. S. Haggerty, “Laser-Induced Vapour-Phase Syntheses of Boron and Titanium Diboride Powders,” J. Mater. Sci. 22 (2), 737–744 (1987).

    Article  ADS  Google Scholar 

  11. A. L. Pickering et al., “Room Temperature Synthesis of Surface-Functionalised Boron Nanoparticles,” Chem. Commun., No. 6, 580 (2007).

    Google Scholar 

  12. R. A. Yetter, G. A. Risha, and S. F. Son, “Metal Particle Combustion and Nanotechnology,” Proc. Combust. Inst. 32 (2), 1819–1838 (2009).

    Article  Google Scholar 

  13. E. L. Dreizin, “Metal-Based Reactive Nanomaterials,” Prog. Energy Combust. Sci. 35 (2), 141–167 (2009).

    Article  Google Scholar 

  14. G. Young, C. W. Roberts, and C. A. Stoltz, “Ignition and Combustion Enhancement of Boron with Polytetrafluoroethylene,” J. Propul. Power 31 (1), 386–392 (2015).

    Article  Google Scholar 

  15. W. Yang et al., “Impacts of Particle Size and Pressure on Reactivity of Boron Oxidation,” J. Propul. Power 29 (5), 1207–1213 (2013).

    Article  MathSciNet  Google Scholar 

  16. B. E. Nikol’skii, N. L. Patratii, and Yu. V. Frolov, “Combustion of Boron-Containing Condensed Systems,” Fiz. Goreniya Vzryva 28 (1), 51–53 (1992) [Combust., Expl., Shock Waves 28 (1), 45–47 (1992)].

    Google Scholar 

  17. A. Ulas, K. K. Kuo, and C. Gotzmer, “Ignition and Combustion of Boron Particles in Fluorine-Containing Environments,” Combust. Flame 127 (1–2), 1935–1957 (2001).

    Article  Google Scholar 

  18. T. L. Connell et al., “Boron and Polytetrafluoroethylene as a Fuel Composition for Hybrid Rocket Applications,” J. Propul. Power 31 (1), 373–385 (2015).

    Article  Google Scholar 

  19. K.-L. Chintersingh, M. Schoenitz, and E. L. Dreizin, “Oxidation Kinetics and Combustion of Boron Particles with Modified Surface,” Combust. Flame 173 288–295 (2016).

    Article  Google Scholar 

  20. B. J. Bellott et al., “Nanoenergetic Materials: Boron Nanoparticles from the Pyrolysis of Decaborane and Their Functionalisation,” Chem. Commun., No. 22, 3214 (2009).

    Google Scholar 

  21. I. Glassman, F. A. Williams, and P. Antaki, “A Physical and Chemical Interpretation of Boron Particle Combustion,” Symp. Int. Combust. 20 (1), 2057–2064 (1985).

    Article  Google Scholar 

  22. R. Nuzzo and G. Girolami, High Energy Nanomaterials: Aluminum and Boron: Army Research Office Review of Nano Engineered Energetic Materials (NEEM) MURI (HEAT Center, Aberdeen, 2010).

    Google Scholar 

  23. C. P. Talley, “Combustion of Elemental Boron,” Aero/Space Engineering 18, 37–47 (1959).

    Google Scholar 

  24. A. Maceic and J. M. Semple, “Combustion of Boron Particles at Atmospheric Pressure,” Combust. Sci. Technol. 1 (3), 181–191 (1969).

    Article  Google Scholar 

  25. Burning of Powdered Metals in Active Media, Ed. by P. F. Pokhil et al. (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  26. Ignition and Combustion of Powdered Metals, Ed. by D. A. Yagodnikov (Bauman Moscow State Tech. Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  27. W. Ao, J. H. Zhou, W. J. Yang, et al., “Ignition, Combustion, and Oxidation of Mixtures of Amorphous and Crystalline Boron Powders,” Fiz. Goreniya Vzryva 50 (6), 51–53 (2014) [Combust., Expl., Shock Waves 50 (6), 45–47 (2014)].

    Google Scholar 

  28. A. S. Nechepurenko, V. M. Shamrikov, Yu. Ya. Lasychenkov, et al., “Boron, Its Oxygen-Free Compounds, and Their Application in Modern Technology,” Tr. Ural. Nauch.-Issled. Khim. Inst. 72, 1–6 (2005).

    Google Scholar 

  29. A. Jain et al., “Characterization of Electrodeposited Elemental Boron,” Mater. Charact. 59 (7), 890–900 (2008).

    Article  Google Scholar 

  30. A. Jain et al., “Structural Characterization of Electrodeposited Boron,” Bull. Mater. Sci. 36 (7), 1323–1329 (2013).

    Article  Google Scholar 

  31. B. Callmer, “An Accurate Refinement of the β-Rhombohedral Boron Structure,” Acta Crystallogr. B 33 (6), 1951–1954 (1977).

    Article  Google Scholar 

  32. S. Brutti et al., “Synchrotron Powder Diffraction Rietveld Refinement of MgB20 Crystal Structure,” Intermetallics 10 (8), 811–817 (2002).

    Article  Google Scholar 

  33. I. Higashi, “Aluminum Distribution in the Boron Framework of γ-AlB12,” J. Solid State Chem. 47 (3), 333–349 (1983).

    Article  ADS  Google Scholar 

  34. B. Van Devener et al., “Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder As Combined Combustion Catalyst and High Energy Density Fuel,” Energy Fuels 23 (12), 6111–6120 (2009).

    Article  Google Scholar 

  35. W. E. Moddeman et al., “Surface Oxides of Boron and B12O2 as Determined by XPS,” Surf. Interface Anal. 14 (5), 224–232 (1989).

    Article  Google Scholar 

  36. M. Ennaceur and B. Terreault, “XPS Study of the Process of Oxygen Gettering by Thin Films of PACVD Boron,” J. Nucl. Mater. 280 (1), 33–38 (2000).

    Article  ADS  Google Scholar 

  37. C. Ronning et al., “Ion Beam Synthesis of Boron Carbide Thin Films,” Surf. Coat. Technol. 158–159, 382–387 (2002).

    Article  Google Scholar 

  38. P. J. Kervalishvili et al., “Hydrogen, Nitrogen, and Oxygen Behavior in Boron,” J. Mater. Res. 7 (7), 1822–1828 (1992).

    Article  ADS  Google Scholar 

  39. D. N. Hendrickson, J. M. Hollander, W. L. Jolly, “Core-Electron Binding Energies for Compounds of Boron, Carbon, and Chromium,” Inorg. Chem. 9 (3), 612–615 (1970).

    Article  Google Scholar 

  40. J. J. Pireaux et al., “High Resolution ESCA Study of Uranium Fluorides: UF4 and K2UF6,” Chem. Phys. Lett. 46 (2), 215–219 (1977).

    Article  ADS  Google Scholar 

  41. C. D. Wagner, “Studies of the Charging of Insulators in ESCA,” J. Electron Spectrosc. Relat. Phenom. 18 (3), 345–349 (1980).

    Article  Google Scholar 

  42. A. I. Grigor’ev, V. I. Sigimov, and I. D. Grigor’eva, “Ignition of a Solid Particle of Boron,” Fiz. Goreniya Vzryva 10 (4), 539–542 (1974) [Combust., Expl., Shock Waves 10 (4), 467–470 (1974)].

    Google Scholar 

  43. A. I. Grigor’ev, I. D. Grigor’eva, and V. I. Sigimov, “Oxidation Kinetics of Boron,” Fiz. Goreniya Vzryva 12 (1), 52–56 (1976) [Combust., Expl., ShockWaves 12 (1), 44–47 (1976)].

    Google Scholar 

  44. D. Z. Safaneev, L. Ya. Kashporov, Yu. M. Grigoriev, “Heat-Liberation Kinetics in Boron–Oxygen Interaction,” Fiz. Goreniya Vzryva 17 (2), 109–114 (1981) [Combust., Expl., Shock Waves 17 (2), 210–214 (1981)].

    Google Scholar 

  45. M. A. Trunov et al., “Effect of Polymorphic Phase Transformations in Al2O3 Film on Oxidation Kinetics of Aluminum Powders,” Combust. Flame. 140 (4), 310–318 (2005).

    Article  Google Scholar 

  46. D. Meerov et al., “Boron Particles Agglomeration and Slag During Combustion of Energetic Condensed Systems,” Phys. Procedia 72, 85–88 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pivkina.

Additional information

Original Russian Text © A.N. Pivkina, N.V. Muravyev, K.A. Monogarov, D.B. Meerov, I.V. Fomenkov, E.A. Skryleva, M.Yu. Presnyakov, A.L. Vasiliev, N.I. Shishov, Yu.M. Milekhin.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 4, pp. 73–83, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivkina, A.N., Muravyev, N.V., Monogarov, K.A. et al. Comparative Analysis of Boron Powders Obtained by Various Methods. I. Microstructure and Oxidation Parameters during Heating. Combust Explos Shock Waves 54, 450–460 (2018). https://doi.org/10.1134/S0010508218040093

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218040093

Keywords

Navigation