Skip to main content
Log in

Calculation of the characteristics of agglomerates during combustion of high-energy composite solid propellants

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The problem of calculating the characteristics of the agglomerates formed during combustion of high-energy composite solid propellants is considered. It is shown that the mathematical models developed by the authors can be used for different propellant formulations to evaluate not only the dispersion of agglomerates, but also their quantity, chemical composition, and structure. The rules (algorithm) of using the developed models for a wide range of propellant formulations are determined. Modeling results for a number of propellant formulations based on various components are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Crump, “Aluminum Combustion in Composite Propellants,” in Proc. of 2nd ICRPG Combustion Conf. CPIA, 1966, Publ. 105, Vol. 1, pp. 321–329.

    Google Scholar 

  2. M. W. Beckstead, “A Model for Solid Propellant Combustion,” Proc. of 14th JANNAF Combustion Meeting. CPIA, 1977, Publ. 292, Vol. 1, pp. 281–306.

    Google Scholar 

  3. V. G. Grigor’ev, “Aluminum Agglomeration during Combustion of Composite Formulations with Variable Dispersion of Components,” Candidate’s Dissertation in Phys. and Math. Sci. (Inst. of Chemical Kinetics and Combustion, Novosibirsk, 1983).

    Google Scholar 

  4. V. G. Grigor’ev, K. P. Kutsenogii, and V. E. Zarko, “Model of Aluminum Agglomeration during the Combustion of a Composite Propellant,” Fiz. Goreniya Vzryva 17 (4), 9–17 (1981) [Combust., Expl., Shock Waves 17 (4), 356–363 (1981)].

    Google Scholar 

  5. S. Gallier, “A Stochastic Pocket Model for Aluminum Agglomeration in Solid Propellants,” Propell., Explos., Pyrotech. 34 (2), 97–105 (2009).

    Article  Google Scholar 

  6. F. Maggi, L. T. De Luca, and T. L. Jackson, “Using Statistics for Agglomerate Prediction in Aluminized Rocket Propellants,” in Proc. of 3rd Eur. Conf. for Aerospace Sciences, Versailles, France, 6–10 July, 2009, Paper 308, pp. 1–10.

    Google Scholar 

  7. T. L. Jackson, F. Najjar, and J. Buckmaster, “New Aluminum Agglomeration Models and Their Use in Solid–Propellant–Rocket Simulations,” J. Propul. Power. 21 (5), 925–936 (2005).

    Article  Google Scholar 

  8. V. D. Gladun, Yu. V. Frolov, and L. Ya. Kashporov, “Agglomeration of Particles of a Metal Powder during Combustion of Composite Condensed Systems,” Preprint (Joint Inst. of Chemical Physics, Chernogolovka, 1977).

    Google Scholar 

  9. A. Gany, L. H. Caveny, and M. Summerfield, “Aluminized Solid Propellants Burning in a Rocket Motor,” AIAA J. 16 (7), 736–739 (1978).

    Article  ADS  Google Scholar 

  10. V. Ya. Zyryanov, “Model for Predicting Agglomeration during Combustion of Metallized Systems,” in Proc. VIII All-Union Symposium on Combustion and Explosion (Chernogolovka, 1986), pp. 59–62.

    Google Scholar 

  11. O. B. Kovalev, A. P. Petrov, and A. V. Folts, “Simulating Aluminum Powder Aggregation in Mixed Condensed-System Combustion,” Fiz. Goreniya Vzryva 23 (2), 17–21 (1987) [Combust., Expl., Shock Waves 23 (2), 133–136 (1987)].

    Google Scholar 

  12. O. B. Kovalev, “Physicomathematical Model of the Aluminum Agglomeration in the Combustion of Composite Condensed Systems,” Fiz. Goreniya Vzryva 25 (1), 39–48 (1989) [Combust., Expl., Shock Waves 25 (1), 34–42 (1989)].

    Google Scholar 

  13. N. S. Cohen, “A Pocket Model for Aluminum Agglomeration in Composite Propellants,” Aerokosm. Tekh. 2 (2), 67–75 (1984).

    Google Scholar 

  14. O. B. Kovalev, A. P. Petrov, and V. M. Fomin, “Combustion Wave Structure in Heterogeneous Solid Propellants,” Fiz. Goreniya Vzryva 29 (3), 8–16 (1993) [Combust., Expl., Shock Waves 29 (3), 258–265 (1993)].

    Google Scholar 

  15. V. A. Babuk, I. N. Dolotkazin, and V. V. Sviridov, “Simulation of agglomerate dispersion in combustion of aluminized solid propellants,” Fiz. Goreniya Vzryva 39 (2), 195–203 (2003) [Combust., Expl., Shock Waves, 39 (2), 86–96 (2003)].

    Google Scholar 

  16. M. W. Tanner, “Multidimensional Modeling of Solid Propellant Burning Rates and Aluminum Agglomeration and One-Dimensional Modeling of RDX/GAP and AP/HTPB,” Ph.D. Dissertation (Brigham Young Univ., Provo, Utah, USA, 2008).

    Google Scholar 

  17. S. A. Rashkovskii, “Statistical Modeling of the Combustion of Heterogeneous Condensed Mixtures,” Doct. Dissertation in Phys. and Math. Sci. (Institute of Problems of Mechanics, Moscow, 2004).

    Google Scholar 

  18. V. Srinivas and S. R. Chakravarthy, “Computer Model of Aluminum Agglomeration on Burning Surface of Composite Solid Propellant,” J. Propul. Power. 23 (4), 728–736 (2007).

    Article  Google Scholar 

  19. V. A. Babuk, I. N. Dolotkazin, and A. A. Nizyaev “Analysis and Synthesis of Solutions for the Agglomeration Process Modeling,” in EUCASS Book Series. Advances in Aerospace Sciences (EUCASS, Torus Press, EDP Sciences, Paris, 2013), pp. 33–58 (Prog. Propulsion Phys.; Vol. 4).

    Google Scholar 

  20. V. A. Babuk, “Properties of the Surface Layer and Combustion Behavior of Metallized Solid Propellants,” Fiz. Goreniya Vzryva 45 (4), 156–165 (2009) [Combust., Expl., Shock Waves 45 (4), 486–494 (2009)].

    Google Scholar 

  21. V. A. Babuk, V. A. Vassiliev, and V. V. Sviridov, “Formation of Condensed Combustion Products at the Burning Surface of Solid Rocket Propellant,” in Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Ed. by V. Yang, T. B. Brill, and W. Z. Ren (AIAA, Reston, 2000), Ch. 2.21, pp. 749–776.

    Google Scholar 

  22. V. A. Babuk, V. A. Vasilyev, and M. S. Malakhov “Condensed Combustion Products at the Burning Surface of Aluminized Solid Propellant,” J. Propul. Power. 15 (6), 783–794 (1999).

    Article  Google Scholar 

  23. V. A. Babuk, I. N. Dolotkazin, A. A. Glebov “Burning Mechanism of Aluminized Solid Rocket Propellants Based on Energetic Binders,” Propell., Explos., Pyrotech. 30 (4), 281–290 (2005).

    Article  Google Scholar 

  24. O. G. Glotov, D. A. Yagodnikov, V. S. Vorob’ev, V. E. Zarko, and V. N. Simonenko, “Ignition, Combustion, and Agglomeration of Encapsulated Aluminum Particles in a Composite Solid Propellant. II. Experimental Studies of Agglomeration,” Fiz. Goreniya Vzryva 43 (3), 83–97 (2007) [Combust., Expl., Shock Waves 43 (3), 320–333 (2007)].

    Google Scholar 

  25. V. K. Ponomarenko, Rocket Propellants (Mozhaiskii Academy of Military and Space Engineering, St. Petersburg, 1995) [in Russian].

    Google Scholar 

  26. V. A. Babuk, A. A. Glebov, V. A. Arkhipov, A. B. Vorozhtsov, G. F. Klyakin, F. Severini, L. Galfetti, L. T. DeLuca, “Dual-Oxidizer Solid Rocket Propellants for Low-Cost Access to Space,” in Space Propulsion, Ed. by L. T. DeLuca, R. L. Sackheim, and B. A. Palaszewski (Grafiche GSS, Bergamo, Italy, 2005), Paper 15, pp. 1–20.

    Google Scholar 

  27. V. A. Babuk, V. A. Vasilyev, A. A. Glebov, et al., “Combustion mechanisms of AN-based aluminized solid rocket propellants,” in Novel Energetic Materials and Applications Grafiche GSS, Ed. by L. T. DeLuca, L. Galfetti, and R. A. Pesce-Rodriguez (Bergamo, Italy, Dec. 2004), Paper 44, pp. 1–20.

    Google Scholar 

  28. V. Babuk I. Dolotkazin, A. Gamsov, A. Glebov, L. T. DeLuca, and L. Galfetti, “Nanoaluminum as a Solid Propellant Fuel,” J. Propul. Power 25 (2), 482–489 (2009).

    Article  Google Scholar 

  29. O. G. Glotov, “Condensed Combustion Products of Aluminized Propellants. IV. Effect of the Nature of Nitramines on Aluminum Agglomeration and Combustion Efficiency,” Fiz. Goreniya Vzryva 42 (4), 78–92 (2006) [Combust., Expl., Shock Waves 42 (4), 436–449 (2006)].

    MathSciNet  Google Scholar 

  30. V. A. Babuk and A. A. Nizyaev “Modeling the Solid Propellant Structure and the Problem of Describing the Agglomeration Process,” Khim. Fiz. Mezoskop. 16 (1), 31–42 (2014).

    Google Scholar 

  31. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  32. Thermodynamic and Thermal Properties of Combustion Products, Ed. by V. P. Glushko (VINITI, Moscow, 1971), Vol. 1 [in Russian].

  33. V. A. Babuk, V. A. Vasil’ev, and A. N. Potekhin, “Experimental Investigation of Agglomeration during Combustion of Aluminized Solid Propellants in an Acceleration Field,” Fiz. Goreniya Vzryva 45 (1), 38–46 (2009) [Combust., Expl., Shock Waves 45 (1), 32–39 (2009)].

    Google Scholar 

  34. V. A. Babuk, V. A. Vasilyev, V. V. Sviridov, “Propellant Formulation Factors and Metal Agglomeration in Combustion of Aluminized Solid Rocket Propellant,” Combust. Sci. Technol. 163, 261–289 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Babuk.

Additional information

Original Russian Text © V.A. Babuk, A.N. Ivonenko, A.A. Nnizyaev.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 5, pp. 44–56, September–October, 2015.

Original article submitted April 1, 2014; revision submitted October 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babuk, V.A., Ivonenko, A.N. & Nnizyaev, A.A. Calculation of the characteristics of agglomerates during combustion of high-energy composite solid propellants. Combust Explos Shock Waves 51, 549–559 (2015). https://doi.org/10.1134/S0010508215050056

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215050056

Keywords

Navigation