Skip to main content
Log in

Evaluation of Oolong Tea Extract Staining of Brain Tissue with Special Reference to Smooth Endoplasmic Reticulum

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Electron microscopy remains the gold standard for studying the nervous system, as it allows adequate spatial resolution imaging of the finer structures of nervous tissues. Despite the high resolution, correct interpretation of electron microscopy images is only possible with sufficient contrast of unit membranes, cytosolic components and the cytoskeleton, which is achieved using hazardous reagents and heavy metals. Earlier, a solution of dry oolong tea extract was introduced as a replacement for toxic and radioactive uranyl acetate. However, staining with oolong extract showed less contrast of intracellular organelles. It is known that depending on the specimen nature and the experimental conditions, different tissues have unequal ability to capture the stain. Here, oolong tea extract staining of early postnatal and adult rat brain tissue was used for the first time to evaluate it with transmission electron microscopy. We found that oolong extract obtained from freshly prepared tea is equal to conventional stains in section staining and has several advantages. We showed that its use on the immature brain allows the finest details of the smooth endoplasmic reticulum of neurons to be revealed. Also, in combination with osmication with potassium ferricyanide and cacodylate buffer, it provides better visualization of the neuronal cytoskeleton and the smooth cisternae in the terminal astrocytic lamellae. A conventional chemical fixation protocol followed by staining with a saturated oolong tea water extract is also well suited for routine studies of the brain of adult animals, as well as for multiple grids batch staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. J. Deerinck, E. A. Bushong, V. Lev-Ram, et al., Microsc. Microanal. 16, 1138 (2010).

    Article  Google Scholar 

  2. J. C. Tapia, N. Kasthuri, K. J. Hayworth, et al., Nat. Protoc. 7, 193 (2012).

    Article  Google Scholar 

  3. S. Mikula and W. Denk, Nat. Methods 12, 541 (2015).

    Article  Google Scholar 

  4. Y. Hua, P. Laserstein, and M. Helmstaedter, Nat. Commun. 6, 7923 (2015).

    Article  ADS  Google Scholar 

  5. Y. Kubota, J. Sohn, S. Hatada, et al., Nat. Commun. 9, 437 (2018).

    Article  ADS  Google Scholar 

  6. M. Colonnier, Brain Res. 9, 268 (1968).

    Article  Google Scholar 

  7. E. G. Gray, J. Anat. 93, 420 (1959).

    Google Scholar 

  8. A. M. Seligman, H. L. Wasserkrug, and J. S. Hanker, J. Cell Biol. 30, 424 (1966).

    Article  Google Scholar 

  9. L. de Vivo, M. Bellesi, W. Marshall, et al., Science 355, 507 (2017).

    Article  ADS  Google Scholar 

  10. E. Kim, J. Lee, S. Noh, et al., Appl. Microsc. 50, 14 (2020).

    Article  Google Scholar 

  11. S. Sato, Y. Sasaki, A. Adachi, et al., Med. Electron Microsc. 36, 179 (2003).

    Article  Google Scholar 

  12. S. Sato, A. Adachi, Y. Sasaki, and M. Ghazizadeh, J. Microsc. 229, 17 (2008).

    Article  MathSciNet  Google Scholar 

  13. A. A. Miller and A. V. Simakova, Cell Tissue Biol. 4, 109 (2010).

    Article  Google Scholar 

  14. K. Yamaguchi, K.-I. Suzuki, and K. Tanaka, J. Electron Microsc. 59, 113 (2010).

    Article  Google Scholar 

  15. X. He and B. I. N. Liu, J. Microsc. 267, 27 (2017).

    Article  Google Scholar 

  16. C. Pinali, H. Bennett, J. B. Davenport, et al., Circ. Res. 113, 1219 (2013).

    Article  Google Scholar 

  17. Y. Wu, C. Whiteus, C. S. Xu, et al., Proc. Natl. Acad. Sci. U. S. A. 114, E4859 (2017).

    Google Scholar 

  18. V. V. Rogachevskii, Cell Tissue Biol. 7, 487 (2013).

    Article  Google Scholar 

  19. T. Hanaichi, T. Sato, T. Iwamoto, et al., J. Electron Microsc. 35, 304 (1986).

    Google Scholar 

  20. V. I. Popov, H. A. Davies, V. V. Rogachevsky, et al., Neuroscience 128, 251 (2004).

    Article  Google Scholar 

  21. M. G. Stewart, H. A. Davies, C. Sandi, et al., Neuroscience 131, 43 (2005).

    Article  Google Scholar 

  22. A. Cardona, S. Saalfeld, J. Schindelin, et al., PLoS One 7, e38011 (2012).

    Article  ADS  Google Scholar 

  23. E. Kawana, C. Sandri, and K. Akert, Zeitschrift für Zellforschung und mikroskopische Anatomie 115, 284 (1971).

    Article  Google Scholar 

  24. M. Z. Chauhan, J. Arcuri, K. K. Park, et al., iScience 23, 100836 (2020).

  25. M. A. Hayat, Principles and Techniques of Electron Microscopy: Biological Applications (Cambridge University Press, 2000).

    Google Scholar 

  26. M. J. Karnovsky, in 11th Annual Meeting of the American Society for Cell Biology, Abstracts 284, 146 (1971).

  27. L. A. Langford and R. E. Coggeshall, Anat. Rec. 197, 297 (1980).

    Article  Google Scholar 

  28. J. Spacek and K. M. Harris, J. Neurosci. 17, 190 (1997).

    Article  Google Scholar 

  29. J. R. Cooney, J. L. Hurlburt, D. K. Selig, et al., J. Neurosci. 22, 2215 (2002).

    Article  Google Scholar 

  30. T. Cui-Wang, C. Hanus, T. Cui, et al., Cell 148, 309 (2012).

    Article  Google Scholar 

  31. N. Jimenez, K. Vocking, E. G. van Donselaar, et al., J. Struct. Biol. 166, 103 (2009).

    Article  Google Scholar 

  32. M. Nakakoshi, H. Nishioka, and E. Katayama, J. Electron Microsc. 60, 401 (2011).

    Article  Google Scholar 

  33. N. Hosogi, H. Nishioka, and M. Nakakoshi, Microscopy 64, 429 (2015).

    Article  Google Scholar 

  34. K. Inoue, Y. Muranaka, P. Park, and H. Yasuda, in Proceedings of the European Microscopy Congress (2016).

  35. J. Kuipers and B. N. G. Giepmans, Histochem. Cell Biol. 153, 271 (2020).

    Article  Google Scholar 

  36. A. L. Pinto, R. K. Rai, A. Shoemark, et al., Diagnostics 11, 1063 (2021).

    Article  Google Scholar 

  37. A. Moscardini, S. Di Pietro, G. Signore, et al., Sci. Rep. 10, 11540 (2020).

    Article  Google Scholar 

  38. K.-I. Ikeda, K. Inoue, S. Kanematsu, et al., Microsc. Res. Tech. 74, 825 (2011).

    Google Scholar 

  39. N. Benmeradi, B. Payre, and S. L. Goodman, Microsc. Microanal. 21, 721 (2015).

    Article  ADS  Google Scholar 

  40. K. Asami, J. Ultrastruct. Mol. Struct. Res. 95, 38 (1986).

    Article  Google Scholar 

  41. R. C. Wagner, J. Ultrastruct. Res. 57, 132 (1976).

    Article  Google Scholar 

  42. B. Fernandez, I. Suarez, and G. Gonzalez, Anat. Anz. 156, 31 (1984).

    Google Scholar 

  43. A. Reichenbach, A. Derouiche, and F. Kirchhoff, Brain Res. Rev. 63, 11 (2010).

    Article  Google Scholar 

  44. B. S. Khakh and M. V. Sofroniew, Nat. Neurosci. 18, 942 (2015).

    Article  Google Scholar 

  45. N. Simionescu and M. Simionescu, J. Cell Biol. 70, 608 (1976a).

    Article  Google Scholar 

  46. N. Fellner, M. Brandstetter, K. Trimmel, and G. Resch, Resolution 1, 8 (2012).

    Google Scholar 

  47. N. Simionescu and M. Simionescu, J. Cell Biol. 70, 622 (1976b).

    Article  Google Scholar 

  48. M. M.-C. Wang, Y. Yeh, Y.-E. Shih, and J. T.-C. Tzen, J. Food Drug Anal. 26, 609 (2018).

    Article  Google Scholar 

  49. M. G. Sajilata, P. R. Bajaj, and R. S. Singhal, Compr. Rev. Food Sci. Food Saf. 7, 229 (2008).

    Article  Google Scholar 

  50. M. Nakayama, K. Shimatani, T. Ozawa, et al., Biosci., Biotechnol., Biochem. 79, 845 (2015).

    Article  Google Scholar 

  51. M. P. Borisova, A. A. Kataev, and V. S. Sivozhelezov, Biochim. Biophys. Acta, Biomembr. 1861, 1103 (2019).

    Article  Google Scholar 

  52. K. M. Pomier, R. Ahmed, and G. Melacini, Molecules 25 (2020).

  53. C. Cabrera, R. Gimenez, and M. C. Lopez, J. Agric. Food Chem. 51, 4427 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to Vera G. Tsyganova (ITEB RAS) for her help in handling with neonatal brain and hippocampal material provided. The study was performed at Electron Microscopy Core Facilities of the PSCBR RAS (https://www.pbcras.ru/services/tskp/; http://www.ckp-rf.ru/ckp/670266/), Pushchino, Russia and in Electron Microscopy Suite of the Open University, Milton Keynes, UK.

Funding

This study was conducted in the framework of the State assignment of PSCBR RAS, project number АААА-А20-120101390069-4, and supported by RFBR, project number 20-34-90068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rogachevsky.

Additional information

Abbreviations: SEM, scanning electron microscopy; OTO, osmium–thiocarbohydrazide–osmium; PSD, postsynaptic density; TEM, transmission-electron microscopy; UAc, uranyl acetate; OTE, oolong tea extract; sER, smooth endoplasmic reticulum; UL, dye based on lanthanide salts (UranyLess).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkova, E.A., Kraev, I.V. & Rogachevsky, V.V. Evaluation of Oolong Tea Extract Staining of Brain Tissue with Special Reference to Smooth Endoplasmic Reticulum. BIOPHYSICS 67, 752–760 (2022). https://doi.org/10.1134/S0006350922050177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922050177

Keywords:

Navigation