Skip to main content
Log in

Local thermal activation of individual living cells and measurement of temperature gradients in microscopic volumes

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The review is focused on a new, unique and promising method of creating a precision local temperature gradient in the micro- and nanovolumes, allowing to heat a single cell and to explore exogenous and endogenous intracellular processes. Retrospective analysis and systematization of advanced developments in the study of intracellular temperature have been carried out. A device is described in detail consisting of an optical nanoheater, which uses metallic nanoparticles or water warming up with infrared laser beam, enabling setting a stationary temperature gradient of up to 70°C at a distance of 20 μm from the heat source, and a fluorescent microthermometer, which can measure temperature in microvolumes with millisecond resolution. Special attention is paid to the physical, in particular, thermodynamic description of temperature as а parameter of macro-, micro- and nanosystems and to the description of the ultralocal temperature gradient induction mechanism. The results are collected on the implementation of the local heating on living cell and on the thermoinduction of intracellular processes, among which the growth rate of neurites, of about 10 μm/min in a thermal gradient is the most impressive; absolutely new prospects opened by “thermal manipulation” of a living cell are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Eu-TTA:

thenoyltrifluoroacetone trihydrate europium(III)

GFP:

green fluorescent protein

QD:

quantum dots

References

  1. D. P. Chen, R. S. Eisenberg, J. W. Jerome, et al., Biophys. J. 69 (6), 2304 (1995).

    Article  ADS  Google Scholar 

  2. D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998; Mir, Moscow, 2002).

    MATH  Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Statistical Physics, Vol. 5 of A Course of Theoretical Physics (Nauka, Moscow, 1964; Pergamon,New York, 1969).

    Google Scholar 

  4. G. Baffou, H. Rigneault, D. Marguet, L. Jullien, et al., Nat. Methods 11 (9), 899 (2014).

    Article  Google Scholar 

  5. P. L. Kapitsa, Zh. Eksp. Teor. Fiz. 11 (1), 1 (1941).

    ADS  Google Scholar 

  6. A. Shakouri, Proc. IEEE 94 (8) 1613 (2006).

    Article  Google Scholar 

  7. Y. Hu, L. Zeng, A. J. Minnich, et al., Nat. Nanotechnol. 10 (8), 701 (2015).

    Article  ADS  Google Scholar 

  8. A. A. Barinov, Zh. Tsao, V. I. Khvesyuk, et al., Nauka i Obrazovanie: Nauch. Izd. BGTU im. N. E. Baumana 5, 140 (2016).

    Google Scholar 

  9. O. Zohar, M. Ikeda, H. Shinagawa, et al., Biophys. J. 74 (1), 82 (1998).

    Article  ADS  Google Scholar 

  10. V. Zeeb, M. Suzuki, and S. Ishiwata, J. Neurosci. Meth. 139 (1), 69 (2004).

    Article  Google Scholar 

  11. K. Oyama, M. Takabayashi, Y. Takei, et al., Lab. Chip. 12 (9), 1591 (2012).

    Article  Google Scholar 

  12. S. Arai, S.-C. Lee, D. Zhai, et al., Sci. Rep. 4, 6701 (2014).

    Article  Google Scholar 

  13. S. Arai, M. Suzuki, S.J. Park, et al., Chem. Commun. (Cambridge) 51 (38), 8044 (2015).

    Article  Google Scholar 

  14. S. Kiyonaka, T. Kajimoto, R. Sakaguchi, et al., Nat. Methods 10 (12), 1232 (2013).

    Article  Google Scholar 

  15. X. Wang, O. S. Wolfbeis, and R. J. Meier, Chem. Soc. Rev. 42, 7834 (2013).

    Article  Google Scholar 

  16. R. Tanimoto, T. Hiraiwa, Y. Nakai, et al., Sci. Rep. 6, 22071 (2016).

    Article  ADS  Google Scholar 

  17. H. Liu, Y. Fan, J. Wang, et al., Sci. Rep. 5, 14879 (2015).

    Article  ADS  Google Scholar 

  18. T. Frecker, D. Bailey, X. Arzeta-Ferrer, et al., ECS J. Solid State Sci. Technol. 5 (1), R3019 (2016).

    Article  Google Scholar 

  19. W. W. Hsiao, Y. Y. Hui, P. C. Tsai, et al., Acc. Chem. Res. 49 (3), 400 (2016).

    Article  Google Scholar 

  20. G. Kucsko, P. C. Maurer, N. Y. Yao, et al., Nature 500 (7460), 54 (2013).

    Article  ADS  Google Scholar 

  21. S. Sotoma, J. Iimura, R. Igarashi, et al., Nanomaterials 6 (4), 56 (2016).

    Article  Google Scholar 

  22. Ferdinandus, S. Arai, S. Takeoka, et al., ACS Sens. 1 (10), 1222 (2016).

    Article  Google Scholar 

  23. K. Oyama, V. Zeeb, Y. Kawamura, et al., Nature Sci. Rep. 5, 16611 (2015). doi 10.1038/srep16611

    Article  ADS  Google Scholar 

  24. M. Suzuki, V. Zeeb, S. Arai, et al., Nat. Methods 10, 802 (2015).

    Article  Google Scholar 

  25. J. Hone, M. Whitney, C. Piskoti, et al., Phys. Rev. B59, R2514 (1999).

    Article  ADS  Google Scholar 

  26. W. J. Evans and P. Keblinski, Nanotechnology 21 (47), 475704 (2010).

    Article  ADS  Google Scholar 

  27. Handbook of Chemistry and Physics, 67th ed., Ed. by R. C. Weast, M. J. Astle, and W. H. Beyer (CRC Press, Boca Raton, FL, 1986).

    Google Scholar 

  28. Y. Liu, D. K. Cheng, G. J. Sonek, et al., Biophys. J. 68, 2137 (1995).

    Article  ADS  Google Scholar 

  29. M. Suzuki, V. Tseeb, K. Oyama, et al., Biophys. J. 92, L46(2007).

    Article  Google Scholar 

  30. V. Tseeb, M. Suzuki, K. Oyama, et al., HFSP J. 3, 117 (2009).

    Article  Google Scholar 

  31. K. Oyama, T. Arai, A. Isaka, et al., Biophys. J. 109 (2), 355 (2015).

    Article  ADS  Google Scholar 

  32. A. Marino, S. Arai, Y. Hou, et al., ACS Nano 11 (3), 2494 (2017).

    Article  Google Scholar 

  33. K. Oyama, A. Mizuno, S. A. Shintani, et al., Biochem. Biophys. Res. Commun. 417 (1), 607 (2012).

    Article  Google Scholar 

  34. Y. Kamei, M. Suzuki, K. Watanabe, et al., Nat. Methods 6 (1), 79 (2009).

    Article  Google Scholar 

  35. S. Sundaramoorthy, A. Garcia Badaracco, S. M. Hirsch, et al., ACS Appl. Mater. Interfaces 9 (9), 7929 (2017).

    Article  Google Scholar 

  36. E. Miyako, T. Deguchi, Y. Nakajima, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (19), 7523 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zeeb.

Additional information

Original Russian Text © O.Yu. Antonova, O.Yu. Kochetkova, L.I. Shabarchina, V.E. Zeeb, 2017, published in Biofizika, 2017, Vol. 62, No. 5, pp. 938–948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, O.Y., Kochetkova, O.Y., Shabarchina, L.I. et al. Local thermal activation of individual living cells and measurement of temperature gradients in microscopic volumes. BIOPHYSICS 62, 769–777 (2017). https://doi.org/10.1134/S0006350917050025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917050025

Keywords

Navigation