Skip to main content
Log in

A Comprehensive Review on Euphorbiaceae lectins: Structural and Biological Perspectives

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Euphorbiaceae, also known as the spurge family, is a large group of flowering plants. Despite being tropical natives, they are now widespread. Due to its medicinal and commercial importance, this family of plants attracted a lot of attention in the scientific community. The distinctive characteristic of the family is production of milky latex, which is a rich source of several lectins, the proteins that bind carbohydrates. Although their function is unclear, they are believed to defend plants against damaging phytopathogenic microorganisms, insects, and predatory animals. Additionally, they serve as crucial metabolic regulators under a variety of stressors. Detection, separation, purification, and characterization of lectins from the Euphorbiaceae family – mostly from the latex of plants – began over 40 years ago. This effort produced over 35 original research papers that were published. However, no systematic review that compiles these published data has been presented yet. This review summarizes and describes several procedures and protocols employed for extraction and purification of lectins belonging to this family. Physicochemical properties and biological activities of the lectins, along with their medicinal and pharmacological properties, have also been analyzed. Additionally, using examples of ricin and ricin agglutinin, we have structurally analyzed characteristics of the lectin known as Ribosome Inactivating Protein Type II (RIP-Type II) that belongs to this family. We anticipate that this review article will offer a useful compendium of information on this important family of lectins, show the scientists involved in lectin research the gaps in our knowledge, and offer insights for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Raj, S. P., Solomon, P. R., Thangaraj, B., Raj, S. P., Solomon, P. R., and Thangaraj, B. (2022) Euphorbiaceae, Biodiesel from Flowering Plants, Springer, pp. 207-290, https://doi.org/10.1007/978-981-16-4775-8_18.

  2. Raju, A. S., and Ezradanam, V. (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae), Curr. Sci., 83, 1395-1398.

    Google Scholar 

  3. Di Stefano, V., Pitonzo, R., and Schillaci, D. (2011) Chemical constituents and antiproliferative activity of Euphorbia bivonae, Chem. Nat. Compounds, 47, 660, https://doi.org/10.1007/s10600-011-0026-y.

    Article  CAS  Google Scholar 

  4. Webster, G. L. (1967) The genera of Euphorbiaceae in the southeastern United States, J. Arnold Arboretum, 48, 363-430, https://doi.org/10.5962/p.185727.

    Article  Google Scholar 

  5. Olsen, K. M., and Schaal, B. A. (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta, Proc. Natl. Acad. Sci. USA, 96, 5586-5591, https://doi.org/10.1073/pnas.96.10.5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopez, C., Soto, M., Restrepo, S., Piégu, B., Cooke, R., Delseny, M., Tohme, J., and Verdier, V. (2005) Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray, Plant Mol. Biol., 57, 393-410, https://doi.org/10.1007/s11103-004-7819-3.

    Article  CAS  PubMed  Google Scholar 

  7. Abdudeen, A., Selim, M. Y., Sekar, M., and Elgendi, M. (2023) Jatropha’s rapid developments and future opportunities as a renewable source of biofuel – a review, Energies, 16, 828, https://doi.org/10.3390/en16020828.

    Article  CAS  Google Scholar 

  8. Martins, C. G., Appel, M. H., Coutinho, D. S. S., Soares, I. P., Fischer, S., de Oliveira, B. C., Fachi, M. M., Pontarolo, R., Bonatto, S. J. R., Fernandes, L. C., Iagher, F., and de Souza, L. M. (2020) Consumption of latex from Euphorbia tirucalli L. promotes a reduction of tumor growth and cachexia, and immunomodulation in Walker 256 tumor-bearing rats, J. Ethnopharmacol., 255, 112722, https://doi.org/10.1016/j.jep.2020.112722.

    Article  CAS  PubMed  Google Scholar 

  9. Mali, P. Y., and Panchal, S. S. (2017) Euphorbia tirucalli L. : review on morphology, medicinal uses, phytochemistry and pharmacological activities, Asian Pac. J. Tropical Biomed., 7, 603-613, https://doi.org/10.1016/j.apjtb.2017.06.002.

    Article  Google Scholar 

  10. Peumans, W. J., and Damme, E. J. V. (1998) Plant lectins: versatile proteins with important perspectives in biotechnology, Biotechnol. Genet. Engin. Rev., 15, 199-228, https://doi.org/10.1080/02648725.1998.10647956.

    Article  CAS  Google Scholar 

  11. Hamid, R., Masood, A., Wani, I. H., and Rafiq, S. (2013) Lectins: proteins with diverse applications, J. Appl. Pharmaceut. Sci., 3, S93-S103.

    Google Scholar 

  12. Wolin, I. A., Heinrich, I. A., Nascimento, A. P. M., Welter, P. G., Sosa, L. d. V., De Paul, A. L., Zanotto-Filho, A., Nedel, C. B., Lima, L. D., and Osterne, V. J. S. (2021) ConBr lectin modulates MAPKs and Akt pathways and triggers autophagic glioma cell death by a mechanism dependent upon caspase-8 activation, Biochimie, 180, 186-204, https://doi.org/10.1016/j.biochi.2020.11.003.

    Article  CAS  PubMed  Google Scholar 

  13. Santos, A. F., Da Silva, M., Napoleão, T., Paiva, P., Correia, M. D. S., and Coelho, L. (2014) Lectins: Function, structure, biological properties andpotential applications, Curr. Top. Pept. Protein Res., 15, 41-62.

    Google Scholar 

  14. Polito, L., Bortolotti, M., Battelli, M. G., Calafato, G., and Bolognesi, A. (2019) Ricin: an ancient story for a timeless plant toxin, Toxins, 11, 324, https://doi.org/10.3390/toxins11060324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benjamaa, R., Moujanni, A., Kaushik, N., Choi, E. H., Essamadi, A. K., and Kaushik, N. K. (2022) Euphorbia species latex: a comprehensive review on phytochemistry and biological activities, Front. Plant Sci., 13, 1008881, https://doi.org/10.3389/fpls.2022.1008881.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mwine, T. J., and Van Damme, P. (2011) Evaluation of pesticidal properties of Euphorbia tirucalli L. (Euphorbiaceae) against selected pests, Afrika Focus, 24, 119-121, https://doi.org/10.21825/af.v24i1.18035.

    Article  Google Scholar 

  17. Jawade, A. A., Pingle, S. K., Tumane, R. G., Sharma, A. S., Ramteke, A. S., and Jain, R. K. (2016) Isolation and characterization of lectin from the leaves of Euphorbia tithymaloides (L.), Tropical Plant Res., 3, 634-641, https://doi.org/10.22271/tpr.2016.v3.i3.083.

    Article  Google Scholar 

  18. Van Deenen, N., Prüfer, D., and Schulze Gronover, C. (2011) A latex lectin from Euphorbia trigona is a potent inhibitor of fungal growth, Biol. Plant., 55, 335-339, https://doi.org/10.1007/s10535-011-0049-z.

    Article  CAS  Google Scholar 

  19. Kusuma, V., and Kottapalli, S. (2023) Purification and characterization of a novel anti-tumour galactose binding lectin from Euphorbia caducifolia latex, bioRxiv, https://doi.org/10.1101/2023.03.10.532027.

    Article  Google Scholar 

  20. Siritapetawee, J., Limphirat, W., Wongviriya, W., Maneesan, J., and Samosornsuk, W. (2018) Isolation and characterization of a galactose-specific lectin (EantH) with antimicrobial activity from Euphorbia antiquorum L. latex, Int. J. Biol. Macromol., 120, 1846-1854, https://doi.org/10.1016/j.ijbiomac.2018.09.206.

    Article  CAS  PubMed  Google Scholar 

  21. Nsimba-Lubaki, M., Allen, A. K., and Peumans, W. J. (1986) Isolation and partial characterization of latex lectins from three species of the genus Euphorbia (Euphorbiaceae), Physiol. Plant., 67, 193-198, https://doi.org/10.1111/j.1399-3054.1986.tb02442.x.

    Article  CAS  Google Scholar 

  22. Bhat, G. G., Shetty, K. N., Nagre, N. N., Neekhra, V. V., Lingaraju, S., Bhat, R. S., Inamdar, S. R., Suguna, K., and Swamy, B. M. (2010) Purification, characterization and molecular cloning of a monocot mannose-binding lectin from Remusatia vivipara with nematicidal activity, Glycoconjug. J., 27, 309-320, https://doi.org/10.1007/s10719-010-9279-0.

    Article  CAS  Google Scholar 

  23. Wittsuwannakul, R., Wititsuwannakul, D., and Sakulborirug, C. (1998) A lectin from the bark of the rubber tree (Hevea brasiliensis), Phytochemistry, 47, 183-187, https://doi.org/10.1016/S0031-9422(97)00329-4.

    Article  Google Scholar 

  24. Torky, Z. A. (2016) Antiviral activity of euphorbia lectin against herpes simplex virus 1 and its antiproliferative activity against human cancer cell-line, J. Antiviral. Antiretroviral., 8, 107-116, https://doi.org/10.4172/jaa.1000145.

    Article  Google Scholar 

  25. Rafiq, S., Qadir, S., Wani, I. H., Ganie, S. A., Masood, A., and Hamid, R. (2014) Purification and partial characterization of a fructose-binding lectin from the leaves of Euphorbia helioscopia, Pak. J. Pharm. Sci., 27, 1805-1810.

    CAS  PubMed  Google Scholar 

  26. Seshagirirao, K., and Prasad, M. N. V. (1995) Purification and partial charaterization of a lectin from Euphorbia neriifolia latex, Biochem. Mol. Biol. Int., 35, 1199-1204.

    CAS  PubMed  Google Scholar 

  27. Seshagirirao, K. (1995) Purification and partial characterization of a lectin from Pedilanthus tithymaloides latex, Biochem. Arch., 11, 197-202.

    CAS  Google Scholar 

  28. Stirpe, F., Licastro, F., Morini, M. C., Parente, A., Savino, G., Abbondanza, A., Bolognesi, A., Falasca, A. I., and Rossi, C. A. (1993) Purification and partial characterization of a mitogenic lectin from the latex of Euphorbia marginata, Biochim. Biophys. Acta Gen. Subj., 1158, 33-39, https://doi.org/10.1016/0304-4165(93)90093-N.

    Article  CAS  Google Scholar 

  29. Lynn, K., and Clevette-Radford, N. (1986) Lectins from latices of euphorbia and elaeophorbia species, Phytochemistry, 25, 1553-1557, https://doi.org/10.1016/S0031-9422(00)81207-8.

    Article  CAS  Google Scholar 

  30. Inamdar, S. R., Murugiswamy, B., and Madaiah, M. (1988) Purification and characterization of a lectin from Euphorbia nivulia Buch. Ham. latex, Int. J. Peptide Protein Res., 31, 35-46, https://doi.org/10.1111/j.1399-3011.1988.tb00004.x.

    Article  CAS  Google Scholar 

  31. Nsimba-Lubaki, M., Peumans, W. J., and Carlier, A. R. (1983) Isolation and partial characterization of a lectin from Euphorbia heterophylla seeds, Biochem. J., 215, 141, https://doi.org/10.1042/bj2150141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Villanueva, J., Quirós, L. M., and Castañón, S. (2015) Purification and partial characterization of a ribosome-inactivating protein from the latex of Euphorbia trigona Miller with cytotoxic activity toward human cancer cell lines, Phytomedicine, 22, 689-695, https://doi.org/10.1016/j.phymed.2015.04.006.

    Article  CAS  PubMed  Google Scholar 

  33. Al Gaali, A., Modawe, G., Ahmed, R. M., and Konozy, E. H. (2019) Isolation of Jatropha curcas seeds isolectins with variable affinity for human and animal blood types, Sudan J. Med. Sci., 14, 202-209, https://doi.org/10.18502/sjms.v14i4.5900.

    Article  Google Scholar 

  34. Thomas, T. S., and Li, S. L. (1980) Purification and physicochemical properties of ricins and agglutinins from Ricinus communis, Eur. J. Biochem., 105, 453-459, https://doi.org/10.1111/j.1432-1033.1980.tb04520.x.

    Article  Google Scholar 

  35. Santana, S. S., Gennari-Cardoso, M. L., Carvalho, F. C., Roque-Barreira, M. C., Santiago, A. d. S., Alvim, F. C., and Pirovani, C. P. (2014) Eutirucallin, a RIP-2 type lectin from the latex of Euphorbia tirucalli L. presents proinflammatory properties, PLoS One, 9, e88422, https://doi.org/10.1371/journal.pone.0088422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davey, F., and Nelson, D. (1977) Periodic Acid Schiff (PAS) Stain, in Hematology (Williams, W. J., Buetler, E., Erslev, A. J., and Rundles, R. W., eds) McGraw-Hill, New York.

  37. Konozy, E. H., Bernardes, E. S., Rosa, C., Faca, V., Greene, L. J., and Ward, R. J. (2003) Isolation, purification, and physicochemical characterization of a D-galactose-binding lectin from seeds of Erythrina speciosa, Arch. Biochem. Biophys., 410, 222-229, https://doi.org/10.1016/S0003-9861(02)00695-1.

    Article  CAS  PubMed  Google Scholar 

  38. Barbieri, L., Falasca, A., Franceschi, C., Licastro, F., Rossi, C., and Stirpe, F. (1983) Purification and properties of two lectins from the latex of the euphorbiaceous plants Hura crepitans L. (sand-box tree) and Euphorbia characias L. (Mediterranean spurge), Biochem. J., 215, 433-439, https://doi.org/10.1042/bj2150433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dias-Baruffi, M., Sakamoto, M., Rossetto, S., Vozari-Hampe, M., and Roque-Barreira, M. C. (2000) Neutrophil migration and aggregation induced by euphorbin, a lectin from the latex of Euphorbia milii, var. milii, Inflamm. Res., 49, 732-736, https://doi.org/10.1007/s000110050654.

    Article  CAS  PubMed  Google Scholar 

  40. Irazoqui, F. J., Vozari-Hampe, M. M., Lardone, R. D., Villarreal, M. A., Sendra, V. G., Montich, G. G., Trindade, V. M., Clausen, H., and Nores, G. A. (2005) Fine carbohydrate recognition of Euphorbia milii lectin, Biochem. Biophys. Res. Commun., 336, 14-21, https://doi.org/10.1016/j.bbrc.2005.08.028.

    Article  CAS  PubMed  Google Scholar 

  41. Richter, A., Mota, C., Santiago, F., and Barbosa, M. (2014) Evaluation of the antitumor effect of lectin obtained from the latex of Euphorbia tirucalli against tumor cells of Ehrlich, BMC Proc., 8, P38, https://doi.org/10.1186/1753-6561-8-S4-P38.

    Article  PubMed Central  Google Scholar 

  42. Palharini, J. G., Richter, A. C., Silva, M. F., Ferreira, F. B., Pirovani, C. P., Naves, K. S., Goulart, V. A., Mineo, T. W., Silva, M. J., and Santiago, F. M. (2017) Eutirucallin: a lectin with antitumor and antimicrobial properties, Front. Cell. Infect. Microbiol., 7, 136, https://doi.org/10.3389/fcimb.2017.00136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Souza, M. A., Amâncio-Pereira, F., Cardoso, C. R. B., Silva, A. G. D., Silva, E. G., Andrade, L. R., Pena, J. D. O., Lanza, H., and Afonso-Cardoso, S. R. (2005) Isolation and partial characterization of a D-galactose-binding lectin from the latex of Synadenium carinatum, Braz. Arch. Biol. Technol., 48, 705-716, https://doi.org/10.1590/S1516-89132005000600005.

    Article  CAS  Google Scholar 

  44. Tsaneva, M., and Van Damme, E. J. (2020) 130 years of plant lectin research, Glycoconjug. J., 37, 533-551, https://doi.org/10.1007/s10719-020-09942-y.

    Article  CAS  Google Scholar 

  45. Van Holle, S., and Van Damme, E. J. (2015) Distribution and evolution of the lectin family in soybean (Glycine max), Molecules, 20, 2868-2891, https://doi.org/10.3390/molecules20022868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Osman, M. E.-F. M., Dirar, A. I., and Konozy, E. H. E. (2022) Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance, BMC Plant Biol., 22, 397, https://doi.org/10.1186/s12870-022-03792-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin, J.-Y., Tserng, K.-Y., Chen, C.-C., Lin, L.-T., and Tung, T.-C. (1970) Abrin and ricin: new anti-tumour substances, Nature, 227, 292-293, https://doi.org/10.1038/227292a0.

    Article  CAS  PubMed  Google Scholar 

  48. Worbs, S., Skiba, M., Söderström, M., Rapinoja, M.-L., Zeleny, R., Russmann, H., Schimmel, H., Vanninen, P., Fredriksson, S.-Å., and Dorner, B. G. (2015) Characterization of ricin and R. communis agglutinin reference materials, Toxins, 7, 4906-4934, https://doi.org/10.3390/toxins7124856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pohl, P., Antonenko, Y. N., Evtodienko, V. Y., Pohl, E. E., Saparov, S. M., Agapov, I. I., and Tonevitsky, A. G. (1998) Membrane fusion mediated by ricin and viscumin, Biochim. Biophys. Acta Biomembr., 1371, 11-16, https://doi.org/10.1016/S0005-2736(98)00024-8.

    Article  CAS  Google Scholar 

  50. Brandt, N., Chikishev, A. Y., Sotnikov, A., Savochkina, Y. A., Agapov, I., and Tonevitsky, A. (2005) Ricin, ricin agglutinin, and the ricin binding subunit structural comparison by Raman spectroscopy, J. Mol. Structure, 735, 293-298, https://doi.org/10.1016/j.molstruc.2004.09.032.

    Article  CAS  Google Scholar 

  51. Konareva, N., Gabdulkhakov, A., Eschenburg, S., Stoeva, S., Popov, A., Krauspenhaar, R., Andrianova, M., Savochkina, Y., Agapov, I., and Tonevitskii, A. (2001) Topology of the polypeptide chain in the complex of agglutinin from castor bean seeds with β-D-galactose in the crystalline state, Crystallogr. Rep., 46, 792-800, https://doi.org/10.1134/1.1405866.

    Article  Google Scholar 

  52. Sphyris, N., Lord, J. M., Wales, R., and Roberts, L. M. (1995) Mutational Analysis of the ricinus lectin B-chains: galactose-binding ability of the 2β subdomain of Ricinus communis agglutinin B-chain, J. Biol. Chem., 270, 20292-20297, https://doi.org/10.1074/jbc.270.35.20292.

    Article  CAS  PubMed  Google Scholar 

  53. Frankel, A. E., Burbage, C., Fu, T., Tagge, E., Chandler, J., and Willingham, M. C. (1996) Ricin toxin contains at least three galactose-binding sites located in B chain subdomains 1α, 1β, and 2γ, Biochemistry, 35, 14749-14756, https://doi.org/10.1021/bi960798s.

    Article  CAS  PubMed  Google Scholar 

  54. Peumans, W. J., and Van Damme, E. (1995) Lectins as plant defense proteins, Plant Physiol., 109, 347, https://doi.org/10.1104/pp.109.2.347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barre, A., Bourne, Y., Van Damme, E. J., and Rougé, P. (2019) Overview of the structure–function relationships of mannose-specific lectins from plants, algae and fungi, Int. J. Mol. Sci., 20, 254, https://doi.org/10.3390/ijms20020254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, J. H., Singh, T., Herp, A., and Wu, A. M. (2006) Carbohydrate recognition factors of the lectin domains present in the Ricinus communis toxic protein (ricin), Biochimie, 88, 201-217, https://doi.org/10.1016/j.biochi.2005.07.007.

    Article  CAS  PubMed  Google Scholar 

  57. Wu, A. M., Wu, J. H., Singh, T., Lai, L.-J., Yang, Z., and Herp, A. (2006) Recognition factors of Ricinus communis agglutinin 1 (RCA1), Mol. Immunol., 43, 1700-1715, https://doi.org/10.1016/j.molimm.2005.09.008.

    Article  CAS  PubMed  Google Scholar 

  58. Wu, J. H., Herp, A., and Wu, A. M. (1993) Defining carbohydrate specificity of Ricinus communis agglutinin as Ga1β1→4GlcNAc (II)> Galβ1→3GlcNAc (I)> Galα1→3Gal (B)> Galβ1→3GalNAc (T), Mol. Immunol., 30, 333-339, https://doi.org/10.1016/0161-5890(93)90062-G.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Y., Yu, G., Han, Z., Yang, B., Hu, Y., Zhao, X., Wu, J., Lv, Y., and Chai, W. (2011) Specificities of Ricinus communis agglutinin 120 interaction with sulfated galactose, FEBS Lett., 585, 3927-3934, https://doi.org/10.1016/j.febslet.2011.10.035.

    Article  CAS  PubMed  Google Scholar 

  60. Hua, J., Liu, Y., Xiao, C.-J., Jing, S.-X., Luo, S.-H., and Li, S.-H. (2017) Chemical profile and defensive function of the latex of Euphorbia peplus, Phytochemistry, 136, 56-64, https://doi.org/10.1016/j.phytochem.2016.12.021.

    Article  CAS  PubMed  Google Scholar 

  61. Bleuler-martínez, S., Butschi, A., Garbani, M., Wälti, M. A., Wohlschlager, T., Potthoff, E., Sabotiĉ, J., Pohleven, J., Lüthy, P., Hengartner, M. O., Aebi, M., and Künzler, M. (2011) A lectin-mediated resistance of higher fungi against predators and parasites, Mol. Ecol., 20, 3056-3070, https://doi.org/10.1111/j.1365-294X.2011.05093.x.

    Article  CAS  PubMed  Google Scholar 

  62. Konozy, E. H. E., Osman, M. E. M., Dirar, A. I., and Ghartey-Kwansah, G. (2022) Plant lectins: a new antimicrobial frontier, Biomed. Pharmacother., 155, 113735, https://doi.org/10.1016/j.biopha.2022.113735.

    Article  CAS  PubMed  Google Scholar 

  63. Schrot, J., Weng, A., and Melzig, M. F. (2015) Ribosome-inactivating and related proteins, Toxins, 7, 1556-1615, https://doi.org/10.3390/toxins7051556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Olsnes, S., Refsnes, K., and Pihl, A. (1974) Mechanism of action of the toxic lectins abrin and ricin, Nature, 249, 627-631, https://doi.org/10.1038/249627a0.

    Article  CAS  PubMed  Google Scholar 

  65. De Zaeytijd, J., and Van Damme, E. J. (2017) Extensive evolution of cereal ribosome-inactivating proteins translates into unique structural features, activation mechanisms, and physiological roles, Toxins, 9, 123, https://doi.org/10.3390/toxins9040123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Acosta, W., Ayala, J., Dolan, M. C., and Cramer, C. L. (2015) RTB Lectin: a novel receptor-independent delivery system for lysosomal enzyme replacement therapies, Sci. Rep., 5, 14144, https://doi.org/10.1038/srep14144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Hara, J. M., and Mantis, N. J. (2013) Neutralizing monoclonal antibodies against ricin’s enzymatic subunit interfere with protein disulfide isomerase-mediated reduction of ricin holotoxin in vitro, J. Immunol. Methods, 395, 71-78, https://doi.org/10.1016/j.jim.2013.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yermakova, A., Klokk, T. I., O’Hara, J. M., Cole, R., Sandvig, K., and Mantis, N. J. (2016) Neutralizing monoclonal antibodies against disparate epitopes on ricin toxin’s enzymatic subunit interfere with intracellular toxin transport, Sci. Rep., 6, 22721, https://doi.org/10.1038/srep22721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lord, M. J., Jolliffe, N. A., Marsden, C. J., Pateman, C. S., Smith, D. C., Spooner, R. A., Watson, P. D., and Roberts, L. M. (2003) Ricin: mechanisms of cytotoxicity, Toxicol. Rev., 22, 53-64, https://doi.org/10.2165/00139709-200322010-00006.

    Article  CAS  PubMed  Google Scholar 

  70. Franke, H., Scholl, R., and Aigner, A. (2019) Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and “Papyrus Ebers” to modern perspectives and “poisonous plant of the year 2018”, Naunyn Schmiedebergs Arch. Pharmacol., 392, 1181-1208, https://doi.org/10.1007/s00210-019-01691-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.H.E.K. provided the idea and supervised the work, wrote a major part of the initial draft, and revised the final version. M.E.M.O. wrote parts of the first draft, analyzed the structures, and participated in preparation of illustrations. A.I.D. participated in the analysis of structures and preparation of illustrations.

Corresponding author

Correspondence to Emadeldin Hassan E. Konozy.

Ethics declarations

The authors declare no conflicts of interests in financial or any other spheres. This article does not contain description of studies with involvement of human participants or animals performed by any the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konozy, E.H.E., Osman, M.E.M. & Dirar, A.I. A Comprehensive Review on Euphorbiaceae lectins: Structural and Biological Perspectives. Biochemistry Moscow 88, 1956–1969 (2023). https://doi.org/10.1134/S0006297923110238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923110238

Keywords

Navigation