Skip to main content
Log in

Phytohormones Affect Differentiation Status of Human Skin Fibroblasts via UPR Activation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Normalization of secretory activity and differentiation status of mesenchymal cells, including fibroblasts, is an important biomedical problem. One of the possible solutions is modulation of unfolded protein response (UPR) activated during fibroblast differentiation. Here, we investigated the effect of phytohormones on the secretory activity and differentiation of cultured human skin fibroblasts. Based on the analysis of expression of genes encoding UPR markers, abscisic acid (ABA) upregulated expression of the GRP78 and ATF4 genes, while gibberellic acid (GA) upregulated expression of CHOP. Evaluation of the biosynthetic activity of fibroblasts showed that ABA promoted secretion and synthesis of procollagen I and synthesis of fibronectin, as well as the total production of collagen and non-collagen proteins of the extracellular matrix (ECM). ABA also stimulated the synthesis of smooth muscle actin α (α-SMA), which is the marker of myofibroblasts, and increased the number of myofibroblasts in the cell population. On the contrary, GA increased the level of fibronectin secretion, but reduced procollagen I synthesis and the total production of the ECM collagen proteins. GA downregulated the synthesis of α-SMA and decreased the number of myofibroblasts in the cell population. Our results suggest that phytohormones modulate the biosynthetic activity of fibroblasts and affect their differentiation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

α-SMA:

α-smooth muscle actin

ABA:

abscisic acid

ATF4:

activating transcription factor 4

CHOP:

CCAAT/enhancer-binding protein homologous protein

ER:

endoplasmic reticulum

GA:

gibberellic acid

GRP78:

glucose-regulated protein 78

PERK:

protein kinase RNA-like endoplasmic reticulum kinase

sXBP1:

spliced X-box binding protein 1

UPR:

unfolded protein response

References

  1. Desai, V. D., Hsia, H. C., and Schwarzbauer, J. E. (2014) Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells, PLoS One, 9, e86865, https://doi.org/10.1371/journal.pone.0086865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heindryckx, F., Binet, F., Ponticos, M., Rombouts, K., Lau, J., et al. (2016) Endoplasmic reticulum stress enhances fibrosis through IRE 1α-mediated degradation of miR-150 and XBP-1 splicing, EMBO Mol. Med., 8, 729-744, https://doi.org/10.15252/emmm.201505925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hinz, B. (2016) The role of myofibroblasts in wound healing, Curr. Res. Transl. Med., 64, 171-177, https://doi.org/10.1016/j.retram.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  4. Ko, U. H., Choi, J., Choung, J., Moon, S., and Shin, J. H. (2019) Physicochemically tuned myofibroblasts for wound healing strategy, Sci. Rep., 9, 16070, https://doi.org/10.1038/s41598-019-52523-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Las Heras, K., Igartua, M., Santos-Vizcaino, E., and Hernandez, R. M. (2020) Chronic wounds: Current status, available strategies and emerging therapeutic solutions, J. Control. Release, 328, 532-550, https://doi.org/10.1016/j.jconrel.2020.09.039.

    Article  CAS  PubMed  Google Scholar 

  6. Zou, M. L., Teng, Y. Y., Wu, J. J., Liu, S. Y., Tang, X. Y., Jia, Y., Chen, Z. H., Zhang, K. W., Sun, Z. L., Li, X., Ye, J. X., Xu, R. S., and Yuan, F. L. (2021) Fibroblasts: heterogeneous cells with potential in regenerative therapy for scarless wound healing, Front. Cell Dev. Biol., 9, 713605, https://doi.org/10.3389/fcell.2021.713605.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Talchai, C., Xuan, S., Lin, H. V., Sussel, L., and Accili, D. (2012) Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure, Cell, 150, 1223-1234, https://doi.org/10.1016/j.cell.2012.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Efrat, S. (2019) Beta-cell dedifferentiation in type 2 diabetes: concise review, STEM Cells, 37, 1267-1272, https://doi.org/10.1002/stem.3059.

    Article  PubMed  Google Scholar 

  9. Lenghel, A., Gheorghita, A. M., Vacaru, A. M., and Vacaru, A.-M. (2021) What is the sweetest UPR flavor for the β-cell? That is the question, Front. Endocrinol., 11, 614123, https://doi.org/10.3389/fendo.2020.614123.

    Article  Google Scholar 

  10. Eastell, R., O’Neill, T. W., Hofbauer, L. C., Langdahl, B., Reid, I. R., Gold, D. T., and Cummings, S. R. (2016) Postmenopausal osteoporosis, Nat. Rev. Dis. Primers, 2, 16069, https://doi.org/10.1038/nrdp.2016.69.

    Article  PubMed  Google Scholar 

  11. Zhang, W., Feng, D., Li, Y., Iida, K., McGrath, B., and Cavener, D. R. (2006) PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis, Cell Metab., 4, 491-497, https://doi.org/10.1016/j.cmet.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  12. Saito, A., Ochiai, K., Kondo, S., Tsumagari, K., Murakami, T., Cavener, D. R., and Imaizumi, K. (2011) Endoplasmic reticulum stress response mediated by the PERK-eIF2-ATF4 pathway is involved in osteoblast differentiation induced by BMP2, J. Biol. Chem., 286, 4809-4818, https://doi.org/10.1074/jbc.M110.152900.

    Article  CAS  PubMed  Google Scholar 

  13. Baek, H. A., Kim, D. S., Park, H. S., Jang, K. Y., Kang, M. J., Lee, D. G., Moon, W. S., Chae, H. J., and Chung, M. J. (2012) Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts, Am. J. Resp. Cell Mol., 46, 731-739, https://doi.org/10.1165/rcmb.2011-0121OC.

    Article  CAS  Google Scholar 

  14. Jang, W.-G., Kim, E.-J., Kim, D.-K., Ryoo, H.-M., Lee, K.-B., Kim, S. H., Choi, H. S., and Koh, J. T. (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription, J. Biol. Chem., 287, 905-915, https://doi.org/10.1074/jbc.M111.253187.

    Article  CAS  PubMed  Google Scholar 

  15. Chan, J. Y., Luzuriaga, J., Bensellam, M., Biden, T. J., and Laybutt, D. R. (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in b-cell gene expression and progression to diabetes, Diabetes, 62, 1557-1568, https://doi.org/10.2337/db12-0701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuzaki, S., Hiratsuka, T., Taniguchi, M., Shingaki, K., Kubo, T., Kiya, K., Fujiwara, T., Kanazawa, S., Kanematsu, R., Maeda, T., Takamura, H., Yamada, K., Miyoshi, K., Hosokawa, K., Tohyama, M., and Katayama, T. (2015) Physiological ER stress mediates the differentiation of fibroblasts, PLoS One, 10, e0123578, https://doi.org/10.1371/journal.pone.0123578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Y. C., Chen, B. C., Huang, H. M., Lin, S. H., and Lin, C. H. (2019) Activation of PERK in ET-1-and thrombin-induced pulmonary fibroblast differentiation: inhibitory effects of curcumin, J. Cell. Physiol., 234, 15977-15988, https://doi.org/10.1002/jcp.28256.

    Article  CAS  PubMed  Google Scholar 

  18. Turishcheva, E., Vildanova, M., Onishchenko, G., and Smirnova, E. (2022) The role of endoplasmic reticulum stress in differentiation of cells of mesenchymal origin, Biochemistry (Moscow), 87, 916-931, https://doi.org/10.1134/S000629792209005X.

    Article  CAS  PubMed  Google Scholar 

  19. Budovsky, A., Yarmolinsky, L., and Ben-Shabat, S. (2015) Effect of medicinal plants on wound healing, Wound Repair Regen., 23, 171-183, https://doi.org/10.1111/wrr.12274.

    Article  PubMed  Google Scholar 

  20. Alamgir, A. N. M. (2018) Therapeutic Use of Medicinal Plants and Their Extracts: Volume 2. Phytochemistry and Bioactive Compounds, Springer Cham, https://doi.org/10.1007/978-3-319-92387-1.

  21. Addis, R., Cruciani, S., Santaniello, S., Bellu, E., Sarais, G., Ventura, C., Maioli, M., and Pintore, G. (2020) Fibroblast proliferation and migration in wound healing by phytochemicals: evidence for a novel synergic outcome, Int. J. Med. Sci., 17, 1030-1042, https://doi.org/10.7150/ijms.43986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma, A., Khanna, S., Kaur, G., and Singh, I. (2021) Medicinal plants and their components for wound healing applications, Futur. J. Pharm. Sci., 7, 53, https://doi.org/10.1186/s43094-021-00202-w.

    Article  Google Scholar 

  23. Kasamatsu, A., Iyoda, M., Usukura, K., Sakamoto, Y., Ogawara, K., Shiiba, M., Tanzawa, H., and Uzawa, K. (2012) Gibberellic acid induces α-amylase expression in adipose-derived stem cells, Int. J. Mol. Med., 30, 243-247, https://doi.org/10.3892/ijmm.2012.1007.

    Article  CAS  PubMed  Google Scholar 

  24. Vildanova, M., Vishnyakova, P., Saidova, A., Konduktorova, V., Onishchenko, G., and Smirnova, E. (2021) Gibberellic acid initiates ER stress and activation of differentiation in cultured human immortalized keratinocytes HaCaT and epidermoid carcinoma cells A431, Pharmaceutics, 13, 1813, https://doi.org/10.3390/pharmaceutics13111813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruzzone, S., Bodrato, N., Usai, C., Guida, L., Moreschi, I., Nano, R., Antonioli, B., Fruscione, F., Magnone, M., Scarfì, S., De Flora, A., and Zocchi, E. (2008) Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger, J. Biol. Chem., 283, 32188-32197, https://doi.org/10.1074/jbc.M802603200.

    Article  CAS  PubMed  Google Scholar 

  26. Bruzzone, S., Magnone, M., Mannino, E., Sociali, G., Sturla, L., Fresia, C., Booz, V., Emionite, L., De Flora, A., and Zocchi, E. (2015) Abscisic acid stimulates glucagon-like peptide-1 secretion from L-cells and its oral administration increases plasma glucagon-like peptide-1 levels in rats, PLoS One, 10, e0140588, https://doi.org/10.1371/journal.pone.0140588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruzzone, S., Battaglia, F., Mannino, E., Parodi, A., Fruscione, F., Basile, G., Salis, A., Sturla, L., Negrini, S., Kalli, F., Stringara, S., Filaci, G., Zocchi, E., and Fenoglio, D. (2012) Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro, Biochem. Biophys. Res. Commun., 422, 70-74, https://doi.org/10.1016/j.bbrc.2012.04.107.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, W., Chen, D.-Q., Qi, F., Wang, J., Xiao, W.-Y., and Zhu, W. Z. (2010) Inhibition of calcium–calmodulin-dependent kinase ii suppresses cardiac fibroblast proliferation and extracellular matrix secretion, J. Cardiovasc. Pharmacol., 55, 96-105, https://doi.org/10.1097/FJC.0b013e3181c9548b.

    Article  CAS  PubMed  Google Scholar 

  29. Matveeva, D.K., Andreeva, E.R., and Buravkova, L.B. (2019) Selection of the optimal protocol for preparation of a decellularized extracellular matrix of human adipose tissue-derived mesenchymal stromal cells, Moscow Univ. Biol. Sci. Bull., 74, 235-239, https://doi.org/10.3103/S0096392519040096.

    Article  Google Scholar 

  30. Basalova, N., Sagaradze, G., Arbatskiy, M., Evtushenko, E., Kulebyakin, K., Grigorieva, O., Akopyan, Z., Kalinina, N., and Efimenko, A. (2020) Secretome of mesenchymal stromal cells prevents myofibroblasts differentiation by transferring fibrosis-associated microRNAs within extracellular vesicles, Cells, 9, 1272, https://doi.org/10.3390/cells9051272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhivodernikov, I. V., Ratushnyy, A. Yu., Matveeva, D. K., and Buravkova, L. B. (2020) Extracellular matrix proteins and transcription of matrix-associated genes in mesenchymal stromal cells during modeling of the effects of microgravity, Bull. Exp. Biol. Med., 170, 230-232, https://doi.org/10.1007/s10517-020-05040-z.

    Article  CAS  PubMed  Google Scholar 

  32. Grigorieva, O. A., Vigovskiy, M. A., Dyachkova, U. D., Basalova, N. A., Aleksandrushkina, N. A., Kulebyakina, M. A., Zaitsev, I. L., Popov, V. S., and Efimenko, A. Y. (2021) Mechanisms of endothelial-to-mesenchymal transition induction by extracellular matrix components in pulmonary fibrosis, Bull. Exp. Biol. Med., 171, 523-531, https://doi.org/10.1007/s10517-021-05264-7.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, M. C., O’Connor, A. J., Kalionis, B., and Heath, D. E. (2022) Improvement of mesenchymal stromal cell proliferation and differentiation via decellularized extracellular matrix on substrates with a range of surface chemistries, Front. Med. Technol., 4, 834123, https://doi.org/10.3389/fmedt.2022.834123.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 3, RESEARCH0034, https://doi.org/10.1186/gb-2002-3-7-research0034.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Turishcheva, E.P., Vildanova, M.S., Potashnikova, D.M., and Smirnova, E.A. (2021) Different reaction of biosynthetic system of human dermal fibroblasts and fibrosarcoma cells to plant hormones, Cell Tiss. Biol., 15, 160-173, https://doi.org/10.1134/S1990519X21020103.

    Article  CAS  Google Scholar 

  36. Kendall, R. T., and Feghali-Bostwick, C. A. (2014) Fibroblasts in fibrosis: novel roles and mediators, Front. Pharmacol., 5, 123, https://doi.org/10.3389/fphar.2014.00123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bonnans, C., Chou, J., and Werb, Z. (2014) Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol., 15, 786-801, https://doi.org/10.1038/nrm3904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vega-Avila, E., and Pugsley, M. K. (2011) An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells, Proc. West. Pharmacol. Soc., 54, 10-14.

    CAS  PubMed  Google Scholar 

  39. Sicari, D., Delaunay-Moisan, A., Combettes, L., Chevet, E., and Igbaria, A. (2020) A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems, FEBS J., 287, 27-42, https://doi.org/10.1111/febs.15107.

    Article  CAS  PubMed  Google Scholar 

  40. Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89-102, https://doi.org/10.1038/nrm3270.

    Article  CAS  PubMed  Google Scholar 

  41. Albacete-Albacete, L., Sanchez-Alvarez, M., and Del Pozo, M. A. (2021) Extracellular vesicles: an emerging mechanism governing the secretion and biological roles of tenascin-C, Front. Immunol., 12, 671485, https://doi.org/10.3389/fimmu.2021.671485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, X., Ding, C., Liu, W., Liu, X., Zhao, Y., Zheng, Y., Dong, L., Khatoon, S., Hao, M., Peng, X., Zhang, Y., and Chen, H. (2021) Abscisic acid ameliorates oxidative stress, inflammation, and apoptosis in thioacetamide-induced hepatic fibrosis by regulating the NF-kB signaling pathway in mice, Eur. J. Pharmacol., 891, 173652, https://doi.org/10.1016/j.ejphar.2020.173652.

    Article  CAS  PubMed  Google Scholar 

  43. Song, M., Peng, H., Guo, W., Luo, M., Duan, W., Chen, P., and Zhou, Y. (2019) Cigarette smoke extract promotes human lung myofibroblast differentiation by the induction of endoplasmic reticulum stress, Respiration, 98, 347-356, https://doi.org/10.1159/000502099.

    Article  CAS  PubMed  Google Scholar 

  44. Huang, W., Gu, H., Zhan, Z., Wang, R., Song, L., Zhang, Y., Zhang, Y., Li, S., Li, J., Zang, Y., Li, Y., and Qian, B. (2021) The plant hormone abscisic acid stimulates megakaryocyte differentiation from human iPSCs in vitro, Platelets, 33, 462-470, https://doi.org/10.1080/09537104.2021.1944616.

    Article  CAS  PubMed  Google Scholar 

  45. Kovuru, N., Raghuwanshi, S., Sharma, D. S., Dahariya, S., Pallepati, A., and Gutti, R. K. (2020) Endoplasmic reticulum stress induced apoptosis and caspase activation is mediated through mitochondria during megakaryocyte differentiation, Mitochondrion, 50, 115-120, https://doi.org/10.1016/j.mito.2019.10.009.

    Article  CAS  PubMed  Google Scholar 

  46. Tai, Y., Woods, E. L., Dally, J., Kong, D., Steadman, R., Moseley, R., and Midgley, A. C. (2021) Myofibroblasts: function, formation, and scope of molecular therapies for skin fibrosis, Biomolecules, 11, 1095, https://doi.org/10.3390/biom11081095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to G. A. Ashniev for his assistance in statistical data processing.

Funding

This study was supported by the Russian Foundation for Basic Research (projects nos. 19-015-00233 and 20-315-90118) within the framework of the State Assignment for the Moscow State University no. 121032300098-5.

Author information

Authors and Affiliations

Authors

Contributions

E.A.S. developed the concept and supervision the study; E.P.T., M.S.V., and D.K.M. performed the experiments; E.P.T., P.A.V., and A.A.S. discussed the results; E.P.T. wrote the article; E.A.S. and G.E.O. edited the manuscript.

Corresponding author

Correspondence to Ekaterina P. Turishcheva.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies involving human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turishcheva, E.P., Vildanova, M.S., Vishnyakova, P.A. et al. Phytohormones Affect Differentiation Status of Human Skin Fibroblasts via UPR Activation. Biochemistry Moscow 88, 810–822 (2023). https://doi.org/10.1134/S0006297923060093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923060093

Keywords

Navigation