Skip to main content
Log in

Allylpolyalkoxybenzene Inhibitors of Galactonolactone Oxidase from Trypanosoma cruzi

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Inhibition of biosynthetic pathways of compounds essential for Trypanosoma cruzi is considered as one of the possible action mechanisms of drugs against Chagas disease. Here, we investigated the inhibition of galactonolactone oxidase from T. cruzi (TcGAL), which catalyzes the final step in the synthesis of vitamin C, an antioxidant that T. cruzi is unable to assimilate from outside and must synthesize itself, and identified allylbenzenes from plant sources as a new class of TcGAL inhibitors. Natural APABs (apiol, dillapiol, etc.) inhibited TcGAL with IC50 = 20-130 µM. The non-competitive mechanism of TcGAL inhibition by apiol was established. Conjugation of APABs with triphenylphosphonium, which ensures selective delivery of biologically active substances to the mitochondria, increased the efficiency and/or the maximum percentage of TcGAL inhibition compared to nonmodified APABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

AOT:

sodium bis(2-ethylhexyl) sulfosuccinate

APAB:

allylpolyalkoxybenzene

ATMB:

allyltetramethoxybenzene

TcGAL:

galactonolactone oxidase from Trypanosoma cruzi

TPP:

triphenylphosphonium

References

  1. García-Huertas, P., and Cardona-Castro, N. (2021) Advances in the treatment of Chagas disease: promising new drugs, plants and targets, Biomed. Pharmacother., 142, 112020, https://doi.org/10.1016/j.biopha.2021.112020.

    Article  CAS  PubMed  Google Scholar 

  2. Lepesheva, G. I., Villalta, F., and Waterman, M. R. (2011) Targeting Trypanosoma cruzi sterol-14α-demethylase (CYP51), Adv. Parasitol., 75, 65-87, https://doi.org/10.1016/b978-0-12-385863-4.00004-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kudryashova, E. V., Leferink, N. G. H., Slot, I. G. M., and van Berkel, W. J. H. (2011) Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C, Biochim. Biophys. Acta, 1814, 545-552, https://doi.org/10.1016/j.bbapap.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  4. Martinez-Peinado, N., Cortes-Serra, N., Torras-Claveria, L., Pinazo, M.-J., Gascon, J., Bastida, J., and Alonso-Padilla, J. (2020) Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity, Parasites Vectors, 13, 299, https://doi.org/10.1186/s13071-020-04171-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chudin, A. A., and Kudryashova, E. V. (2022) Improved enzymatic assay and inhibition analysis of redox membranotropic enzymes, AtGALDH and TcGAL, using a reversed micellar system, Analytica, 3, 36-53, https://doi.org/10.3390/analytica3010004.

    Article  Google Scholar 

  6. Zheoat, A. M., Alenezi, S., Elmahallawy, E. K., Ungogo, M. A., Alghamdi, A. H., Watson, D. G., Igoli, J. O., Gray, A. I., de Koning, H. P., and Ferro, V. A. (2021) Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium, Pathogens, 10, 175, https://doi.org/10.3390/pathogens10020175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aponte, J. C., Verástegui, M., Málaga, E., Zimic, M., Quiliano, M., Vaisberg, A. J., Gilman, R. H., and Hammond, G. B. (2008) Synthesis, cytotoxicity, and anti-Trypanosoma cruzi activity of new chalcones, J. Med. Chem., 51, 6230-6234, https://doi.org/10.1021/jm800812k.

    Article  CAS  PubMed  Google Scholar 

  8. Tsyganov, D. V., Samet, A. V., Silyanova, E. A., Ushkarov, V. I., Varakutin, A. E., Chernysheva, N. B., Chuprov-Netochin, R. N., Khomutov, A. A., Volkova, A. S., Leonov, S. V., Semenova, M. N., and Semenov, V. V. (2022) Synthesis and antiproliferative activity of triphenylphosphonium derivatives of natural allylpolyalkoxybenzenes, ACS Omega, 7, 3369-3383, https://doi.org/10.1021/acsomega.1c05515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zlotnikov, I. D., Belogurova, N. G., Krylov, S. S., Semenova, M. N., Semenov, V. V., and Kudryashova, E. V. (2022) Plant alkylbenzenes and terpenoids in the form of cyclodextrin inclusion complexes as antibacterial agents and levofloxacin synergists, Pharmaceuticals, 15, 861, https://doi.org/10.3390/ph15070861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parise-Filho, R., Pasqualoto, K. F. M., Magri, F. M. M., Ferreira, A. K., da Silva, B. A. V. G., Damião, M. C. F. C. B., Tavares, M. T., Azevedo, R. A., Auada, A. V. V., Polli, M. C., and Brandt, C. A. (2012) Dillapiole as antileishmanial agent: discovery, cytotoxic activity and preliminary SAR studies of dillapiole analogues, Arch. Pharm., 345, 934-944, https://doi.org/10.1002/ardp.201200212.

    Article  CAS  Google Scholar 

  11. Laubasarova, I. R., Khailova, L. S., Nazarov, P. A., Rokitskaya, T. I., Silachev, D. N., Danilina, T. I., Plotnikov, E. Y., Denisov, S. S., Kirsanov, R. S., Korshunova, G. A., Kotova, E. A., Zorov, D. B., and Antonenko, Y. N. (2020) Linking 7-nitrobenzo-2-oxa-1,3-diazole (NBD) to triphenylphosphonium yields mitochondria-targeted protonophore and antibacterial agent, Biochemistry (Moscow), 85, 1578-1590, https://doi.org/10.1134/S000629792012010X.

    Article  Google Scholar 

  12. Khmelnitsky, Yu. L., Levashov, A. V., Klyachko, N. L., and Martinek, K. (1984) Microheterogeneous environment for chemical (enzymatic) reactions based on the colloid water solution in organic solvent, Usp. Khim., 53, 545-565.

    Google Scholar 

  13. Klyachko, N. L., Shchedrina, V. A., Efimov, A. V., Kazakov, S. V., Gazaryan, I. G., Kristal, B. S., and Brown, A. M. (2005) pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state: response to mitochondrial matrix acidification, J. Biol. Chem., 280, 16106-16114, https://doi.org/10.1074/jbc.M414285200.

    Article  CAS  PubMed  Google Scholar 

  14. Morais, T. R., Conserva, G., Varela, M. T., Costa-Silva, T. A., Thevenard, F., Ponci, V., Fortuna, A., Falcão, A. C., Tempone, A. G., Fernandes, J., and Lago, J. (2020) Improving the drug-likeness of inspiring natural products – evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A, Sci. Rep., 10, 5467, https://doi.org/10.1038/s41598-020-62352-w.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was performed using equipment (FTIR spectrometer Bruker Tensor 27 and Jasco J-815 CD Spectrometer) of the program for the development of Moscow State University.

Author information

Authors and Affiliations

Authors

Contributions

E.V.K. conceptualized and supervised the study; V.V.S. and S.S.K. developed the strategy for studying inhibitor series; A.A.Ch. conducted the experiments and wrote the article; I.D.Z. recorded and analyzed FTIR spectra; E.V.K., A.A.Ch., V.V.S., and S.S.K. discussed the results; E.V.K., A.A.Ch., and V.V.S. edited the manuscript.

Corresponding author

Correspondence to Elena V. Kudryashova.

Ethics declarations

The authors declare no conflict of interest. This article contains no description of studies using humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudin, A.A., Zlotnikov, I.D., Krylov, S.S. et al. Allylpolyalkoxybenzene Inhibitors of Galactonolactone Oxidase from Trypanosoma cruzi. Biochemistry Moscow 88, 131–141 (2023). https://doi.org/10.1134/S000629792301011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792301011X

Keywords

Navigation