Skip to main content
Log in

Chimeric Agonist of Galanin Receptor GALR2 Reduces Heart Damage in Rats with Streptozotocin-Induced Diabetes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Neuropeptide galanin and its N-terminal fragments reduce the generation of reactive oxygen species and normalize metabolic and antioxidant states of myocardium in experimental cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to elucidate the effect of WTLNSAGYLLGPβAH-OH (peptide G), a pharmacological agonist of the galanin receptor GalR2, on the cardiac injury induced by administration of streptozotocin (STZ) in rats. Peptide G was prepared by solid phase peptide synthesis using the Fmoc strategy and purified by preparative HPLC; its structure was confirmed by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry. Experimental animals were randomly distributed into five groups: C, control; S, STZ-treated; SG10, STZ + peptide G (10 nmol/kg/day); SG50, STZ + peptide G (50 nmol/kg/day); G, peptide G (50 nmol/kg/day). Administration of peptide G prevented hyperglycemia in SG50 rats. By the end of the experiment, the ATP content, total pool of adenine nucleotides, phosphocreatine (PCr) content, and PCr/ATP ratio in the myocardium of animals of the SG50 group were significantly higher than in rats of the S group. In the SG50 and SG10 groups, the content of lactate and lactate/pyruvate ratio in the myocardium were reduced, while the glucose content was increased vs. the S group. Both doses of peptide G reduced the activation of creatine kinase-MB and lactate dehydrogenase, as well as the concentration of thiobarbituric acid reactive products in the blood plasma of STZ-treated rats to the control values. Taken together, these results suggest that peptide G has cardioprotective properties in type 1 diabetes mellitus. Possible mechanisms of peptide G action in the STZ-induced diabetes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

ΣAN:

total pool of adenine nucleotides (ATP + ADP + AMP)

ΣCr:

total creatine (PCr + Cr)

CK-MB:

creatine kinase MB

DM:

diabetes mellitus

GLUT4:

glucose transporter 4

LDH:

lactate dehydrogenase

LPO:

lipid peroxidation

PCr:

phosphocreatine

ROS:

reactive oxygen species

STZ:

streptozotocin

TBARS:

2-tiobarbituric acid reactive substances

WTLNSAGYLL-NH2:

N-terminal fragment of galanin 2-11

WTLNSAGYLLGPHA-OH:

N-terminal fragment of galanin 2-15

WTLNSAGYLLGPβAH-OH (G):

modified analog of galanin 2-15

References

  1. Varma, U., Koutsifeli, P., Benson, V. L., Mellor, K. M., and Delbridge, L. M. D. (2018) Molecular mechanisms of cardiac pathology in diabetes – experimental insights, Biochim. Biophys. Acta, 1864, 1949-1959, https://doi.org/10.1016/j.bbadis.2017.10.035.

    Article  CAS  Google Scholar 

  2. Boudina, S., and Dale Abel, E. (2007) Diabetic cardiomyopathy revisited, Circulation, 115, 3213-3223, https://doi.org/10.1161/CIRCULATIONAHA.106.679597.

    Article  PubMed  Google Scholar 

  3. Verma, S. K., Garikipati, V. N. S., and Kishore, R. (2017) Mitochondrial dysfunction and its impact on diabetic heart, Biochim. Biophys. Acta, 1863, 1098-1105, https://doi.org/10.1016/j.bbadis.2016.08.021.

    Article  CAS  Google Scholar 

  4. Maritim, A. C., Sanders, R. A., and Watkins, J. B. (2003) Diabetes, oxidative stress and antioxidants. A Review, J. Biochem. Mol. Toxicol., 17, 24-38, https://doi.org/10.1002/jbt.10058.

    Article  CAS  PubMed  Google Scholar 

  5. Ullah, A., Khan, A., and Khan, I. (2016) Diabetes mellitus and oxidative stress – a concise review, Saudi Pharmaceut. J., 24, 547-553, https://doi.org/10.1016/j.jsps.2015.03.013.

    Article  Google Scholar 

  6. Raza, H., Prabu, S. K., John, A., and Avadhani, N. G. (2011) Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats, Internat. J. Mol. Sci., 12, 3133-3147, https://doi.org/10.3390/ijms12053133.

    Article  CAS  Google Scholar 

  7. Webling, K. E. B., Runesson, J., Bartfai, T., and Langel, Ü. (2012) Galanin receptors and ligands, Front. Endocrinol., 3, 146, https://doi.org/10.3389/fendo.2012.00146.

    Article  Google Scholar 

  8. Timotin, A., Pisarenko, O., Sidorova, M., Studneva, I., Shulzhenko, V., et al. (2017) Myocardial protection from ischemia/reperfusion injury by exogenous galanin fragment, Oncotarget, 8, 21241-21252, https://doi.org/10.18632/oncotarget.15071.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pisarenko, O., Timotin, A., Sidorova, M., Studneva, I., Shulzhenko, V., et al. (2017) Cardioprotective properties of N-terminal galanin fragment (2-15) in experimental ischemia/reperfusion injury, Oncotarget, 8, 101659-101671, https://doi.org/10.18632/oncotarget.21503.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Serebryakova, L., Pal’keeva, M., Studneva, I., Molokoedov, A., Veselova, O., et al. (2019) Galanin and its N-terminal fragments reduce acute myocardial infarction in rats, Peptides, 111, 127-131, https://doi.org/10.1016/j.peptides.2018.05.001.

    Article  CAS  PubMed  Google Scholar 

  11. Pisarenko, O. I., Studneva, I. M., Serebryakova, L. I., Timoshin, A. A., Konovalova, G. G., et al. (2021) Antioxidant properties of galanin and its N-terminal fragments in in vitro and in vivo oxidative stress modeling, Biochemistry (Moscow), 86, 496-505, https://doi.org/10.1134/S0006297921040106.

    Article  CAS  Google Scholar 

  12. Studneva, I., Palkeeva, M., Veselova, O., Molokoedov, A., Ovchinnikov, M., et al. (2019) Protective effects of a novel agonist of galanin receptors against doxorubicin-induced cardiotoxicity in rats, Cardiovasc. Toxicol., 19, 136-146, https://doi.org/10.1007/s12012-018-9483-x.

    Article  CAS  PubMed  Google Scholar 

  13. Studneva, I. M., Veselova, O. M., Bahtin, A. A., Konovalova, G. G., Lankin, V. Z., et al. (2020) The mechanisms of cardiac protection using a synthetic agonist of galanin receptors during chronic administration of doxorubicin, Acta Naturae, 12, 20-29, https://doi.org/10.32607/20758251-2020-12-1-89-98.

    Article  Google Scholar 

  14. Fang, P., Sun, J., Wang. X., Zhang, Z., Bo, P., et al. (2013) Galanin participates in the functional regulation of the diabetic heart, Life Sci., 92, 628-632, https://doi.org/10.1016/j.lfs.2013.01.024.

    Article  CAS  PubMed  Google Scholar 

  15. He, B., Shi, M., Zhang, L., Li, G., Fang, P., et al. (2011) Beneficial effect of galanin on insulin sensitivity in muscle of type 2 diabetic rats, Physiol. Behav., 103, 284-289, https://doi.org/10.1016/j.physbeh.2011.02.023.

    Article  CAS  PubMed  Google Scholar 

  16. Legakis, I. N. (2005) The role of galanin in metabolic disorders leading to type 2 diabetes mellitus, Drug News Pers., 18, 173-177, https://doi.org/10.1358/dnp.2005.18.3.892762.

    Article  CAS  Google Scholar 

  17. Az’muko, A. A., Veselova, O. M., Molokoedova, A. S., Ovchinnikov, M. V., Palkeeva, M. E., et al. (2018) Tetradecapeptides improving the reducing function of the cardiovascular system in ischemia, Patent no. 2648846.

  18. Reaven, G. M., and Ho, H. (1991) Low-dose streptozotocin-induced diabetes in the spontaneously hypertensive rat, Metabolism, 40, 335-337, https://doi.org/10.1016/0026-0495(91)90141-i.

    Article  CAS  PubMed  Google Scholar 

  19. Bergmeyer, H. U. (1974) Methods of Enzymatic Analysis. New York, Academic Press, pp. 1196-1200, 1475-1478, 1772-1776, 1777-1781, 2101-2110.

  20. Vanderlinde, R. E. (1985) Measurement of total lactate dehydrogenase activity, Ann. Clin. Lab. Sci., 15, 13-31.

    CAS  PubMed  Google Scholar 

  21. Gulen, S., and Dincer, S. (2007) Effects of leptin on oxidative stress in healthy and streptozotocin-induced diabetic rats, Mol. Cell. Biochem., 302, 59-65, https://doi.org/10.1007/s11010-007-9426-5.

    Article  CAS  PubMed  Google Scholar 

  22. Stanley, W. C., Lopaschuk, G. D., James, G., and McCormack, J. G. (1997) Regulation of energy substrate metabolism in the diabetic heart, Cardiovasc. Res., 34, 25-33.

    Article  CAS  PubMed  Google Scholar 

  23. Saltiel, A. R., and Kahan, C. R. (2001) Insulin signaling and the regulation of glucose and lipid metabolism, Nature, 414, 799-806, https://doi.org/10.1038/414799a.

    Article  CAS  PubMed  Google Scholar 

  24. Dos Santos J. M., Tewari S., and Mendes R. H. (2019) The role of oxidative stress in the development of diabetes mellitus and its complications, J. Diabetes Res., 2019, 4189813, https://doi.org/10.1155/2019/4189813.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Varma, U., Koutsifeli, P., Benson, V. L., Mellor, K. M., and Delbridge, L. M. D. (2018) Molecular mechanisms of cardiac pathology in diabetes – experimental insights, Biochim. Biophys. Acta Mol. Basis Dis., 1864, 1949-1959, https://doi.org/10.1016/j.bbadis.2017.10.035.

    Article  CAS  PubMed  Google Scholar 

  26. Verma, S. K., Garikipati, V. N. S., and Kishore, R. (2017) Mitochondrial dysfunction and its impact on diabetic heart, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 1098-1105, https://doi.org/10.1016/j.bbadis.2016.08.021.

    Article  CAS  PubMed  Google Scholar 

  27. Raza, H., Prabu, S.K., John, A., and Avadhani, N. G. (2011) Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats, Int. J. Mol. Sci., 12, 3133-3147, https://doi.org/10.3390/ijms12053133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferreira, F.M., Palmeira, C. M., Seica, R., Moreno, A. J., and Santos, M. S. (2003) Diabetes and mitochondrial bioenergetics: alterations with age, J. Biochem. Mol. Toxicol., 17, 214-222, https://doi.org/10.1002/jbt.10081.

    Article  CAS  PubMed  Google Scholar 

  29. Marciniak, C., Marechal, X., Montaigne, D., Neviere, M., and Lancel, S. (2014) Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models, Cardiovasc. Diabetol., 13, 118, https://doi.org/10.1186/s12933-014-0118-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, L., Dong, M., Xu, C., Zheng, H., Wei, T., et al. (2018) Identification of energy metabolism changes in diabetic cardiomyopathy rats using a metabonomic approach, Cell. Physiol. Biochem., 48, 934-946, https://doi.org/10.1159/000491960.

    Article  CAS  PubMed  Google Scholar 

  31. Lygate, C. A., and Neubauer, S. (2014) Metabolic flux as a predictor of heart failure prognosis, Circ. Res., 114, 1228-1230, https://doi.org/10.1161/CIRCRESAHA.114.303551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gataulin, R., Veselova, O., Studneva, I., Dobrokhotov, I., et al. (2021) Cardioprotective effects of galanin in a streptozotocin-induced diabetes mellitus rat model. 36th Annual Meeting of the International Society for Heart Research – European Section. Turin, Italy, Frontiers Event Abstracts, pp. 129-130, https://doi.org/10.3389/978-2-88971-002-7.

  33. Zervou, S., Whittington, H. J., Russell, A. J., and Lygate, C. A. (2016) Augmentation of creatine in the heart, Mini Rev. Med. Chem., 16, 19-28, https://doi.org/10.2174/1389557515666150722102151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maritim, A. C., Sanders, R. A., and Watkins, J. B. (2003) Diabetes, oxidative stress and antioxidants. A Review, J. Biochem. Mol. Toxicol., 17, 24-38, https://doi.org/10.1002/jbt.10058.

    Article  CAS  PubMed  Google Scholar 

  35. Bayanes, J. W., and Thrope, S. R. (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm, Diabetes, 48, 1-9, https://doi.org/10.2337/diabetes.48.1.1.

    Article  Google Scholar 

  36. Hall, R. L. (1991) Clinical pathology of laboratory animals, in Animal Models in Toxicology (Gad, S. C., and Chengelis, C. P., eds.) New York, Marcel Dekker Inc., pp. 765-811.

  37. Huang, E., Kuo, W., Chen, Y., Chen, T., Chang, M., et al. (2006) Homocysteine and other biochemical parameters in type 2 diabetes mellitus with different diabetic duration or diabetic retinopathy, Clin. Chim. Acta, 366, 293-298, https://doi.org/10.1016/j.cca.2005.10.025.

    Article  CAS  PubMed  Google Scholar 

  38. Fang, P., He, B., Yu, M., Shi, M., Zhu, Y., et al. (2018) Central galanin receptor 2 mediates galanin action to promote systemic glucose metabolism of type 2 diabetic rats, Biochem. Pharmacol., 156, 241-247, https://doi.org/10.1016/j.bcp.2018.08.036.

    Article  CAS  PubMed  Google Scholar 

  39. Legalkis, I. N., Mantzouridis, T., and Mountokalakis, T. (2007) Positive correlation of galanin with glucose in healthy volunteers during an oral glucose tolerance test, Horm. Metab. Res., 39, 53-55, https://doi.org/10.1055/s-2006-957346.

    Article  Google Scholar 

  40. Gray, S., and Kim, J. K. (2011) New insights into insulin resistance in the diabetic heart, Trends Endocrinol. Metabol., 22, 394-403, https://doi.org/10.1016/j.tem.2011.05.001.

    Article  CAS  Google Scholar 

  41. Tian, R., and Abel, E. D. (2001) Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis, Circulation, 103, 2961-2966, https://doi.org/10.1161/01.CIR.103.24.2961.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, H., Deng, X., Shi, Y., Su, Ye, Wie, J., et al. (2016) PGC-1α, glucose metabolism and type 2 diabetes mellitus, J. Endocrinol., 229, R99-R115, https://doi.org/10.1530/JOE-16-0021.

    Article  CAS  PubMed  Google Scholar 

  43. Fang, P., Shib, M., Guo, L., He, B., Wang, Q., et al. (2014) Effect of endogenous galanin on glucose transporter 4 expression in cardiac muscle of type 2 diabetic rats, Peptides, 62, 159-163, https://doi.org/10.1016/j.peptides.2014.10.001.

    Article  CAS  PubMed  Google Scholar 

  44. Serebryakova, L., Studneva, I., Timoshin, A., Veselova, O., Pal’keeva, M., et al. (2021) Galanin peptides alleviate myocardial ischemia/reperfusion injury by reducing reactive oxygen species form, Inter. J. Peptide Res. Ther., 27, 2039-2048, https://doi.org/10.1007/s10989-021-10231-x.

    Article  CAS  Google Scholar 

  45. Lang, R., Gundlach, A. L., Holmes, F. E., Hobson, S. A., Wynick, D., et al. (2015) Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity, Pharmacol. Rev., 67, 118-175, https://doi.org/10.1124/pr.112.006536.

    Article  CAS  PubMed  Google Scholar 

  46. Hausenloy, D. J., and Yellon, D. M. (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target, J. Clin. Invest., 123, 92-100, https://doi.org/10.1172/JCI62874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jay, M. A., and Ren, J. (2007) Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus, Curr. Diab. Rev., 3, 33-39, https://doi.org/10.2174/157339907779802067.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (projects nos. 18-015-0008-a and 18-015-0009-a) and Ministry of Health of the Russian Federation (registration no. NIOKTR 121031700143-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg I. Pisarenko.

Ethics declarations

The authors declare no conflicts of interests. The study is performed in compliance with the international and/or institutional principles of care and use of animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Studneva, I.M., Veselova, O.M., Dobrokhotov, I.V. et al. Chimeric Agonist of Galanin Receptor GALR2 Reduces Heart Damage in Rats with Streptozotocin-Induced Diabetes. Biochemistry Moscow 87, 346–355 (2022). https://doi.org/10.1134/S0006297922040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922040046

Keywords

Navigation