Skip to main content
Log in

Effect of Membrane Environment on the Ligand-Binding Properties of the Terminal Oxidase Cytochrome bd-I from Escherichia coli

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytochrome bd-I is a terminal oxidase of the Escherichia coli respiratory chain. This integral membrane protein contains three redox-active prosthetic groups (hemes b558, b595, and d) and couples the electron transfer from quinol to molecular oxygen to the generation of proton motive force, as one of its important physiological functions. The study was aimed at examining the effect of the membrane environment on the ligand-binding properties of cytochrome bd-I by absorption spectroscopy. The membrane environment was found to modulate the ligand-binding characteristics of the hemoprotein in both oxidized and reduced states. Absorption changes upon the addition of exogenous ligands, such as cyanide or carbon monoxide (CO), to the detergent-solubilized enzyme were much more significant and heterogeneous than those observed with the membrane-bound enzyme. In the native membranes, both cyanide and CO interacted mainly with heme d. An additional ligand-binding site (heme b558) appeared in the isolated enzyme, as was evidenced by more pronounced changes in the absorption in the Soret band. This additional reactivity could also be detected after treatment of E. coli membranes with a detergent. The observed effect did not result from the enzyme denaturation, since reconstitution of the isolated enzyme into azolectin liposomes restored the ligand-binding pattern close to that observed for the intact membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

BQCl4 :

tetrachloro-1,4-benzoquinone

Ches:

2-(cyclohexylamino)ethanesulfonic acid

CO:

carbon monoxide

cryo-EM:

single-particle cryo-electron microscopy

E m :

midpoint redox potential

Hepes:

N-(2-Hydroxyethyl)piperazine-N-2-ethanesulfonic acid

SB-12:

dodecyl-N,N-dimethyl-ammonio-3-propane-sulfonate

References

  1. Borisov, V. B., Siletsky, S. A., Paiardini, A., Hoogewijs, D., Forte, E., Giuffre, A., and Poole, R. K. (2020) Bacterial oxidases of the cytochrome bd family: Redox enzymes of unique structure, function and utility as drug targets, Antioxid. Redox Signal., https://doi.org/10.1089/ars.2020.8039.

  2. Azarkina, N., Borisov, V., and Konstantinov, A. A. (1997) Spontaneous spectral changes of the reduced cytochrome bd, FEBS Lett., 416, 171-174, https://doi.org/10.1016/S0014-5793(97)01196-4.

    Article  CAS  PubMed  Google Scholar 

  3. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287-1291, https://doi.org/10.1016/j.febslet.2009.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413, https://doi.org/10.1016/j.bbabio.2011.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6, https://doi.org/10.1128/ecosalplus.ESP-0012-2015.

  6. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565-574.

    Google Scholar 

  7. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810-32817, https://doi.org/10.1074/jbc.274.46.32810.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705-3709, https://doi.org/10.1016/j.febslet.2008.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171-234, https://doi.org/10.1016/bs.ampbs.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  10. Pereira, M. M., Gomes, C. M., and Teixeira, M. (2002) Plasticity of proton pathways in haem-copper oxygen reductases, FEBS Lett., 522, 14-18, https://doi.org/10.1016/S0014-5793(02)02920-4.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936-1989, https://doi.org/10.1021/cr500266a.

    Article  CAS  PubMed  Google Scholar 

  12. Papa, S., Capitanio, G., and Papa, F. (2018) The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes, Biol. Rev. Camb. Philos. Soc., 93, 322-349, https://doi.org/10.1111/brv.12347.

    Article  PubMed  Google Scholar 

  13. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379-1426, https://doi.org/10.2741/4550.

    Article  CAS  Google Scholar 

  14. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, https://doi.org/10.1134/S0006297919110130.

    Article  CAS  Google Scholar 

  15. Borisov, V. B. (2002) Defects in mitochondrial respiratory complexes III and IV, and human pathologies, Mol. Aspects Med., 23, 385-412, https://doi.org/10.1016/s0098-2997(02)00013-4.

    Article  CAS  PubMed  Google Scholar 

  16. Borisov, V. B. (2004) Mutations in respiratory chain complexes and human diseases, Ital. J. Biochem., 53, 34-40.

    CAS  PubMed  Google Scholar 

  17. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikstrom, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936-3942, https://doi.org/10.1021/bi00230a019.

    Article  CAS  PubMed  Google Scholar 

  18. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800-13809, https://doi.org/10.1021/bi001165n.

    Article  CAS  PubMed  Google Scholar 

  19. Wikstrom, M., Morgan, J. E., and Verkhovsky, M. I. (1997) Proton and electrical charge translocation by cytochrome c-oxidase, Biochim. Biophys. Acta, 1318, 299-306, https://doi.org/10.1016/S0005-2728(96)00152-1.

    Article  Google Scholar 

  20. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, https://doi.org/10.1073/pnas.94.17.9085.

    Article  CAS  PubMed  Google Scholar 

  21. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657-3662, https://doi.org/10.1073/pnas.0405683102.

    Article  CAS  PubMed  Google Scholar 

  22. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514-28519, https://doi.org/10.1074/jbc.M705562200.

    Article  CAS  PubMed  Google Scholar 

  23. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907-7914, https://doi.org/10.1021/bi800435a.

    Article  CAS  PubMed  Google Scholar 

  24. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320-17324, https://doi.org/10.1073/pnas.1108217108.

    Article  PubMed  Google Scholar 

  25. Cotter, P. A., Chepuri, V., Gennis, R. B., and Gunsalus, R. P. (1990) Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product, J. Bacteriol., 172, 6333-6338, https://doi.org/10.1128/jb.172.11.6333-6338.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexeeva, S., Hellingwerf, K. J., and Teixeira de Mattos, M. J. (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions, J. Bacteriol., 185, 204-209, https://doi.org/10.1128/jb.185.1.204-209.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265-269.

    PubMed  Google Scholar 

  28. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffre, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565-575, https://doi.org/10.1134/S0006297915050077.

    Article  CAS  Google Scholar 

  29. Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622-629, https://doi.org/10.1016/j.febslet.2011.07.035.

    Article  CAS  PubMed  Google Scholar 

  30. Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178-1187, https://doi.org/10.1016/j.bbabio.2014.01.016.

    Article  CAS  PubMed  Google Scholar 

  31. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffre, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201-204, https://doi.org/10.1016/j.febslet.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  32. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823-4826, https://doi.org/10.1016/j.febslet.2006.07.072.

    Article  CAS  PubMed  Google Scholar 

  33. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97-102, https://doi.org/10.1016/j.bbrc.2007.01.118.

    Article  CAS  PubMed  Google Scholar 

  34. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., Poole, R. K., and Cooper, C. E. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94-96, https://doi.org/10.1038/nchembio.135.

    Article  CAS  PubMed  Google Scholar 

  35. Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185-1187, https://doi.org/10.1016/j.jinorgbio.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  36. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182-188, https://doi.org/10.1016/j.bbabio.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  37. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., et al. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788, https://doi.org/10.1038/srep23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975-982.

    CAS  PubMed  Google Scholar 

  39. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231-239.

    Google Scholar 

  40. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428-436, https://doi.org/10.1134/S000629791004005X.

    Article  CAS  Google Scholar 

  41. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214-2218, https://doi.org/10.1016/j.febslet.2013.05.047.

    Article  CAS  PubMed  Google Scholar 

  42. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006-01013, https://doi.org/10.1128/mBio.01006-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., Bald, D., and de Vries, S. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631, https://doi.org/10.1038/srep27631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffre, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta Bioenerg., 1860, 148088, https://doi.org/10.1016/j.bbabio.2019.148088.

    Article  CAS  PubMed  Google Scholar 

  45. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M., et al. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104, https://doi.org/10.1126/science.aay0967.

    Article  CAS  PubMed  Google Scholar 

  46. Theßeling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kagi, J., Muller, R., Bottcher, B., and Friedrich, T. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Commun., 10, 5138, https://doi.org/10.1038/s41467-019-13122-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller, M. J., and Gennis, R. B. (1983) The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain, J. Biol. Chem., 258, 9159-9165.

    CAS  PubMed  Google Scholar 

  48. Kita, K., Konishi, K., and Anraku, Y. (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems, J. Biol. Chem., 259, 3375-3381.

    CAS  PubMed  Google Scholar 

  49. Sakamoto, J., Matsumoto, A., Oobuchi, K., and Sone, N. (1996) Cytochrome bd-type quinol oxidase in a mutant of Bacillus stearothermophilus deficient in caa3-type cytochrome c oxidase, FEMS Microbiol. Lett., 143, 151-158, https://doi.org/10.1016/0378-1097(96)00312-6.

    Article  CAS  PubMed  Google Scholar 

  50. Sun, Y. H., de Jong, M. F., den Hartigh, A. B., Roux, C. M., Rolan, H. G., and Tsolis, R. M. (2012) The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus, Front. Cell. Infect. Microbiol., 2, 47, https://doi.org/10.3389/fcimb.2012.00047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. VanOrsdel, C. E., Bhatt, S., Allen, R. J., Brenner, E. P., Hobson, J. J., et al. (2013) The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity, J. Bacteriol., 195, 3640-3650, https://doi.org/10.1128/JB.00324-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoeser, J., Hong, S., Gehmann, G., Gennis, R. B., and Friedrich, T. (2014) Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett., 588, 1537-1541, https://doi.org/10.1016/j.febslet.2014.03.036.

    Article  CAS  PubMed  Google Scholar 

  53. Chen, H., Luo, Q., Yin, J., Gao, T., and Gao, H. (2015) Evidence for requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis, Biochim. Biophys. Acta, 1850, 318-328, https://doi.org/10.1016/j.bbagen.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  54. Hobson, J. J., Gallegos, A. S., Atha, B. W., 3rd, Kelly, J. P., Lein, C. D., VanOrsdel, C. E., Weldon, J. E., and Hemm, M. R. (2018) Investigation of amino acid specificity in the CydX small protein shows sequence plasticity at the functional level, PLoS One, 13, e0198699, https://doi.org/10.1371/journal.pone.0198699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duc, K. M., Kang, B. G., Lee, C., Park, H. J., Park, Y. M., Joung, Y. H., and Bang, I. S. (2020) The small protein CydX is required for cytochrome bd quinol oxidase stability and function in Salmonella enterica serovar typhimurium: a phenotypic study, J. Bacteriol., 202, e00348-19, https://doi.org/10.1128/JB.00348-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087-2094, https://doi.org/10.1016/j.bbabio.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  57. Goojani, H. G., Konings, J., Hakvoort, H., Hong, S., Gennis, R. B., Sakamoto, J., Lill, H., and Bald, D. (2020) The carboxy-terminal insert in the Q-loop is needed for functionality of Escherichia coli cytochrome bd-I, Biochim. Biophys. Acta, 1861, 148175, https://doi.org/10.1016/j.bbabio.2020.148175.

    Article  CAS  Google Scholar 

  58. Theßeling, A., Burschel, S., Wohlwend, D., and Friedrich, T. (2020) The long Q-loop of Escherichia coli cytochrome bd oxidase is required for assembly and structural integrity, FEBS Lett., 594, 1577-1585, https://doi.org/10.1002/1873-3468.13749.

    Article  PubMed  Google Scholar 

  59. Fang, H., Lin, R.-J., and Gennis, R. B. (1989) Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis, J. Biol. Chem., 264, 8026-8032.

    CAS  PubMed  Google Scholar 

  60. Spinner, F., Cheesman, M. R., Thomson, A. J., Kaysser, T., Gennis, R. B., Peng, Q., and Peterson, J. (1995) The haem b558 component of the cytochrome bd quinol oxidase complex from Escherichia coli has histidine-methionine axial ligation, Biochem. J., 308, 641-644, https://doi.org/10.1042/bj3080641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaysser, T. M., Ghaim, J. B., Georgiou, C., and Gennis, R. B. (1995) Methionine-393 is an axial ligand of the heme b558 component of the cytochrome bd ubiquinol oxidase from Escherichia coli, Biochemistry, 34, 13491-13501, https://doi.org/10.1021/bi00041a029.

    Article  CAS  PubMed  Google Scholar 

  62. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863-5867, https://doi.org/10.1073/pnas.90.12.5863.

    Article  CAS  PubMed  Google Scholar 

  63. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565-28569, https://doi.org/10.1074/jbc.270.48.28565.

    Article  CAS  PubMed  Google Scholar 

  64. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740-750, https://doi.org/10.1021/bi981908t.

    Article  CAS  PubMed  Google Scholar 

  65. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554-1559, https://doi.org/10.1073/pnas.030528197.

    Article  CAS  PubMed  Google Scholar 

  66. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095-22099, https://doi.org/10.1074/jbc.M011542200.

    Article  CAS  PubMed  Google Scholar 

  67. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654-1662, https://doi.org/10.1021/bi0158019.

    Article  CAS  PubMed  Google Scholar 

  68. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b595 is 10 Å, Biochemistry, 47, 1752-1759, https://doi.org/10.1021/bi701884g.

    Article  CAS  PubMed  Google Scholar 

  69. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14-22, https://doi.org/10.1134/S0006297908010021.

    Article  CAS  Google Scholar 

  70. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246-1253, https://doi.org/10.1016/j.bbabio.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  71. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657-1664, https://doi.org/10.1016/j.bbabio.2010.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65-67, https://doi.org/10.1016/j.jinorgbio.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  73. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, https://doi.org/10.1371/journal.pone.0095617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, https://doi.org/10.1371/journal.pone.0155186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354-1366, https://doi.org/10.1134/S000629791711013X.

    Article  CAS  Google Scholar 

  76. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567-4570, https://doi.org/10.1016/j.febslet.2005.07.011.

    Article  CAS  PubMed  Google Scholar 

  77. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177-11184, https://doi.org/10.1021/bi700862u.

    Article  CAS  PubMed  Google Scholar 

  78. Poole, R. K., Kumar, C., Salmon, I., and Chance, B. (1983) The 650 nm chromophore in Escherichia coli is an “Oxy-” or oxygenated compound, not the oxidized form of cytochrome oxidase d: A hypothesis, J. Gen. Microbiol., 129, 1335-1344, https://doi.org/10.1099/00221287-129-5-1335.

    Article  CAS  PubMed  Google Scholar 

  79. Kahlow, M. A., Loehr, T. M., Zuberi, T. M., and Gennis, R. B. (1993) The oxygenated complex of cytochrome d terminal oxidase: direct evidence for Fe-O2 coordination in a chlorin-containing enzyme by Resonance Raman spectroscopy, J. Am. Chem. Soc., 115, 5845-5846, https://doi.org/10.1021/ja00066a071.

    Article  CAS  Google Scholar 

  80. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437-443.

    Google Scholar 

  81. Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509, https://doi.org/10.1016/j.bbabio.2011.02.007.

    Article  CAS  PubMed  Google Scholar 

  82. Lorence, R. M., Miller, M. J., Borochov, A., Faiman-Weinberg, R., and Gennis, R. B. (1984) Effects of pH and detergent on the kinetic and electrochemical properties of the purified cytochrome d terminal oxidase complex of Escherichia coli, Biochim. Biophys. Acta, 790, 148-153, https://doi.org/10.1016/0167-4838(84)90218-8.

    Article  CAS  PubMed  Google Scholar 

  83. Cournia, Z., Allen, T. W., Andricioaei, I., Antonny, B., Baum, D., et al. (2015) Membrane protein structure, function, and dynamics: a perspective from experiments and theory, J. Membr. Biol., 248, 611-640, https://doi.org/10.1007/s00232-015-9802-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Corradi, V., Sejdiu, B. I., Mesa-Galloso, H., Abdizadeh, H., Noskov, S. Y., Marrink, S. J., and Tieleman, D. P. (2019) Emerging diversity in lipid-protein interactions, Chem. Rev., 119, 5775-5848, https://doi.org/10.1021/acs.chemrev.8b00451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gu, R. X., and de Groot, B. L. (2020) Lipid-protein interactions modulate the conformational equilibrium of a potassium channel, Nat. Commun., 11, 2162, https://doi.org/10.1038/s41467-020-15741-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koshy, C., and Ziegler, C. (2015) Structural insights into functional lipid-protein interactions in secondary transporters, Biochim. Biophys. Acta, 1850, 476-487, https://doi.org/10.1016/j.bbagen.2014.05.010.

    Article  CAS  PubMed  Google Scholar 

  87. Andreev, I. M., and Konstantinov, A. A. (1983) Reaction of oxidized cytochrome oxidase with cyanide. Effects of pH, cytochrome c and membrane environment, Bioorg. Khim. (in Russian), 9, 216-227.

    CAS  Google Scholar 

  88. Miller, M. J., and Gennis, R. B. (1986) Purification and reconstitution of the cytochrome d terminal oxidase complex from Escherichia coli, Methods Enzymol., 126, 87-94, https://doi.org/10.1016/s0076-6879(86)26011-5.

    Article  CAS  PubMed  Google Scholar 

  89. Racker, E. (1972) Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors, J. Membr. Biol., 10, 221-235, https://doi.org/10.1007/BF01867856.

    Article  CAS  PubMed  Google Scholar 

  90. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275.

    CAS  PubMed  Google Scholar 

  91. Pudek, M. R., and Bragg, P. D. (1974) Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli, Arch. Biochem. Biophys., 164, 682-693, https://doi.org/10.1016/0003-9861(74)90081-2.

    Article  CAS  PubMed  Google Scholar 

  92. Kauffman, H. F., and Van Gelder, B. F. (1973) The respiratory chain of Azotobacter vinelandii. II. The effect of cyanide on cytochrome d, Biochim. Biophys. Acta, 314, 276-283, https://doi.org/10.1016/0005-2728(73)90112-6.

    Article  CAS  PubMed  Google Scholar 

  93. Koland, J. G., Miller, M. J., and Gennis, R. B. (1984) Potentiometric analysis of the purified cytochrome d terminal oxidase complex from Escherichia coli, Biochemistry, 23, 1051-1056, https://doi.org/10.1021/bi00301a003.

    Article  CAS  Google Scholar 

  94. Lorence, R. M., Koland, J. G., and Gennis, R. B. (1986) Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b595, Biochemistry, 25, 2314-2321, https://doi.org/10.1021/bi00357a003.

    Article  CAS  PubMed  Google Scholar 

  95. George, P., and Tsou, C. L. (1952) Reaction between hydrocyanic acid, cyanide ion and ferricytochrome c, Biochem. J., 50, 440-448, https://doi.org/10.1042/bj0500440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Varhac, R., Tomaskova, N., Fabian, M., and Sedlak, E. (2009) Kinetics of cyanide binding as a probe of local stability/flexibility of cytochrome c, Biophys. Chem., 144, 21-26, https://doi.org/10.1016/j.bpc.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  97. Ben-Gershom, E. (1961) Use of carbon monoxide for detecting denaturation in haemoproteins, Biochem. J., 78, 218-223, https://doi.org/10.1042/bj0780218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. George, P., and Schejter, A. (1964) The reactivity of ferrocytochrome c with iron-binding ligands, J. Biol. Chem., 239, 1504-1508.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks V. P. Skulachev for his interest in this work and useful discussion, I. A. Smirnova for her help in the initial stage of the experiments and valuable suggestions, and R. B. Gennis for kindly provided E. coli strain GO105/pTK1. The author would also like to express his deepest gratitude to A. A. Konstantinov (passed away 1st May, 2020), who had inspired the author to perform this work.

Funding

This work was supported by the Russian Science Foundation (project no. 19-14-00063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Borisov.

Ethics declarations

The author declares no conflict of interest in financial or any other sphere. This article does not contain any studies involving animals or human participants.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, V.B. Effect of Membrane Environment on the Ligand-Binding Properties of the Terminal Oxidase Cytochrome bd-I from Escherichia coli. Biochemistry Moscow 85, 1603–1612 (2020). https://doi.org/10.1134/S0006297920120123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920120123

Keywords

Navigation