Skip to main content
Log in

Role of protein L25 and its contact with protein L16 in maintaining the active state of Escherichia coli ribosomes in vivo

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A ribosomal protein of the L25 family specifically binding to 5S rRNA is an evolutionary feature of bacteria. Structural studies showed that within the ribosome this protein contacts not only 5S rRNA, but also the C-terminal region of protein L16. Earlier we demonstrated that ribosomes from the ΔL25 strain of Escherichia coli have reduced functional activity. In the present work, it is established that the reason for this is a fraction of functionally inactive 50S ribosomal subunits. These subunits have a deficit of protein L16 and associate very weakly with 30S subunits. To study the role of the contact of these two proteins in the formation of the active ribosome, we created a number of E. coli strains containing protein L16 with changes in its C-terminal region. We found that some mutations (K133L or K127L/K133L) in this protein lead to a noticeable slowing of cell growth and decrease in the activity of their translational apparatus. As in the case of the ribosomes from the ΔL25 strain, the fraction of 50S subunits, which are deficient in protein L16, is present in the ribosomes of the mutant strains. All these data indicate that the contact with protein L25 is important for the retention of protein L16 within the E. coli ribosome in vivo. In the light of these findings, the role of the protein of the L25 family in maintaining the active state of the bacterial ribosome is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M., and Cate, J. H. D. (2005) Structures of the bacterial ribosome at 3.5 Å resolution, Science, 310, 827–834.

    Article  CAS  PubMed  Google Scholar 

  2. Selmer, M., Dunham, C. M., Murphy, F. V., IVth, Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R., and Ramakrishnan, V. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA, Science, 313, 19351942.

    Article  Google Scholar 

  3. Korostelev, A., Trakhanov, S., Laurberg, M., and Noller, H. F. (2006) Crystal structure of a 70S ribosome–tRNA complex reveals functional interactions and rearrangements, Cell, 126, 1065–1077.

    Article  CAS  PubMed  Google Scholar 

  4. Yusupova, G., Jenner, L., Rees, B., Moras, D., and Yusupov, M. (2006) Structural basis for messenger RNA movement on the ribosome, Nature, 444, 391–394.

    Article  CAS  PubMed  Google Scholar 

  5. Laurberg, M., Asahara, H., Korostelev, A., Zhu, J., Trakhanov, S., and Noller, H. F. (2008) Structural basis for translation on the 70S ribosome, Nature, 454, 852–857.

    Article  CAS  PubMed  Google Scholar 

  6. Voorhees, R. M., Weixlbaumer, A., Loakes, D., Kelley, A. C., and Ramakrishnan, V. (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome, Nat. Struct. Mol. Biol., 16, 528–533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Schmeing, T. M., Voorhees, R. M., Kelley, A. C., Gao, Y. G., Murphy, F. V., IVth, Weir, J. R., and Ramakrishnan, V. (2009) The crystal structure of the ribosome bound to EFTu and aminoacyl-tRNA, Science, 326, 688–694.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gao, Y. G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C., and Ramakrishnan, V. (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocation state, Science, 326, 694–699.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dunkle, J. A., Wang, L., Feldman, M. B., Pulk, A., Chen, V. B., Kapral, G. J., Noeske, J., Richardson, J. S., Blanchard, S. C., and Cate, J. H. D. (2011) Structures of the bacterial ribosome in classical and hybrid states of tRNA binding, Science, 332, 981–984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lecompte, O., Ripp, R., Thierry, J. C., Moras, D., and Poch, O. (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale, Nucleic Acids Res., 30, 5382–5390.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. (2008) GenBank, Nucleic Acids Res., 36, 25–30.

    Article  Google Scholar 

  12. Ban, N., Beckmann, R., Cate, J. H., Dinman, J. D., Dragon, F., Ellis, S. R., Lafontaine, D. L., Lindahl, L., Liljas, A., Lipton, J. M., McAlear, M. A., Moore, P. B., Noller, H. F., Ortega, J., Panse, V. G., Ramakrishnan, V., Spahn, C. M., Steitz, T. A., Tchorzewski, M., Tollervey, D., Warren, A. J., Williamson, J. R., Wilson, D., Yonath, A., and Yusupov, M. (2014) A new system for naming ribosomal proteins, Curr. Opin. Stuct. Biol., 24, 1–5.

    Article  Google Scholar 

  13. Gongadze, G. M., Korepanov, A. P., Korobeinikova, A. V., and Garber, M. B. (2008) Bacterial 5S rRNA-binding proteins of the CTC family, Biochemistry (Moscow), 73, 14051417.

  14. Hecker, M., and Volker, U. (1990) General stress proteins in Bacillus subtilis, FEMS Microbiol. Ecol., 74, 197–214.

    Article  CAS  Google Scholar 

  15. Schmalisch, M., Langbein, I., and Stulke, J. (2002) The general stress protein CTC of Bacillus subtilis is a ribosomal protein, J. Mol. Microbiol. Biotechnol., 4, 495–501.

    CAS  PubMed  Google Scholar 

  16. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K-12 inframe, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2, 1–11.

    Article  Google Scholar 

  17. Korepanov, A. P., Gongadze, G. M., Garber, M. B., Court, D. L., and Bubunenko, M. G. (2007) Importance of the 5S rRNA-binding ribosomal proteins for cell viability and translation in Escherichia coli, J. Mol. Biol., 366, 1199–1208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lotti, M., Noah, M., Stoffler-Meilicke, M., and Stoffler, G. (1989) Localization of L4, L5, L20 and L25 on the ribosomal surface by immune-electron microscopy, Mol. Gen. Genet., 216, 245–253.

    Article  CAS  PubMed  Google Scholar 

  19. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium, Cell, 107, 679–688.

    Article  CAS  PubMed  Google Scholar 

  20. Kazemie, M. (1976) Binding of aminoacyl-tRNA to reconstituted subparticles of Escherichia coli large ribosomal subunits, Eur. J. Biochem., 67, 373–378.

    Article  CAS  PubMed  Google Scholar 

  21. Teraoka, H., and Nierhaus, K. H. (1978) Protein L16 induces a conformational change when incorporated into a L16-deficient core derived from Escherichia coli ribosomes, FEBS Lett., 88, 223–227.

    Article  CAS  PubMed  Google Scholar 

  22. Tate, W. P., Schulze, H., and Nierhaus, K. H. (1983) The importance of the Escherichia coli ribosomal protein L16 for the reconstitution of the peptidyl-tRNA hydrolysis activity of peptide chain termination, J. Biol. Chem., 258, 12810–12815.

    CAS  PubMed  Google Scholar 

  23. Anikaev, A. Y., Korepanov, A. P., Korobeinikova, A. V., Kljashtorny, V. G., Piendl, W., Nikonov, S. V., Garber, M. B., and Gongadze, G. M. (2014) Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo, Biochemistry (Moscow), 79, 826–835.

    Article  CAS  Google Scholar 

  24. Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  25. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., and Court, D. L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli, Proc. Natl. Acad. Sci. USA, 97, 5978–5983.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Thomason, L. C., Bubunenko, M., Costantino, N., Wilson, H., Oppenheim, A., Datta, S., and Court, D. L. (2007) Recombineering: genetic engineering in bacteria using homologous recombination, Curr. Protoc. Mol. Biol., doi: 10.1002/0471142727.mb0116s78.

    Google Scholar 

  27. Erbe, R. W., Nau, M. M., and Leder, P. (1969) Translation and translocation of defined RNA messengers, J. Mol. Biol., 38, 441–460.

    Article  Google Scholar 

  28. Staehelin, T., Maglott, D. M., and Monro, R. E. (1969) On the catalytic center of peptidyl transfer: a part of the 50S ribosome structure, Cold Spring Harb. Symp. Quant. Biol., 34, 39–48.

    Article  CAS  PubMed  Google Scholar 

  29. Schlessinger, D., Mangiarotti, G., and Apirion, D. (1967) The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli, Proc. Natl. Acad. Sci. USA, 58, 1782–1789.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kohler, R. A., Ron, E. Z., and Davis, B. D. (1968) Significance of the free 70S ribosomes in Escherichia coli extracts, J. Mol. Biol., 36, 71–82.

    Article  CAS  PubMed  Google Scholar 

  31. Kolb, V. A., Makeyev, E. V., and Spirin, A. S. (2000) Cotranslational folding of an eukaryotic multidomain protein in a prokaryotic translation system, J. Biol. Chem., 275, 16597–16601.

    Article  CAS  PubMed  Google Scholar 

  32. Madjar, J., Michel, S., Cozzone, A., and Reboud, J. (1979) A method to identify individual proteins in four different two-dimensional electrophoresis systems: application to E. coli ribosomal proteins, Anal. Biochem., 92, 174–182.

    Article  CAS  PubMed  Google Scholar 

  33. Algranati, I. D., Gonzalez, N. S., and Bade, E. G. (1969) Physiological role of 70S ribosome in bacteria, Proc. Natl. Acad. Sci. USA, 62, 574–580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cannon, M. (1967) The ribosomal binding site for peptidyl-transfer-ribonucleic acid, Biochem. J., 104, 934–946.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Klein, D. J., Moore, P. B., and Steitz, T. A. (2004) The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit, J. Mol. Biol., 340, 141–177.

    Article  CAS  PubMed  Google Scholar 

  36. Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution, Science, 334, 1524–1529.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson, K. S., Ito, K., Noller, H. F., and Nakamura, Y. (2000) Functional sites of interaction between release factor RF1 and the ribosome, Nat. Struct. Biol., 7, 866–870.

    Article  CAS  PubMed  Google Scholar 

  38. La Teana, A., Gualerzi, C. O., and Dahlberg, A. E. (2001) Initiation factor IF2 binds to the a-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA, RNA, 7, 11731179.

  39. Scarlett, D. J., McCaughan, K. K., Wilson, D. N., and Tate, W. P. (2003) Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting, J. Biol. Chem., 278, 15095–15104.

    Article  CAS  PubMed  Google Scholar 

  40. Wilson, K. S., and Nechifor, R. (2004) Interactions of translation factor EF-G with the bacterial ribosome before and after mRNA translocation, J. Mol. Biol., 337, 15–30.

    Article  CAS  PubMed  Google Scholar 

  41. Sergiev, P. V., Bogdanov, A. A., and Dontsova, O. A. (2005) How can elongation factors EF-G and EF-Tu discriminate the functional state of the ribosome using the same binding site? FEBS Lett., 579, 5439–5442.

    Article  CAS  PubMed  Google Scholar 

  42. Kiparisov, S. V., Sergiev, P. V., Bogdanov, A. A., and Dontsova, O. A. (2006) The structural changes in the ribosome during the elongation cycle, Mol. Biol. (Moscow), 40, 755–768.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Gongadze.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 1, pp. 68-77.

Originally published in Biochemistry (Moscow) On-Line, Papers in Press, as Manuscript BM15-230, November 1, 2015.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikaev, A.Y., Isaev, A.B., Korobeinikova, A.V. et al. Role of protein L25 and its contact with protein L16 in maintaining the active state of Escherichia coli ribosomes in vivo . Biochemistry Moscow 81, 19–27 (2016). https://doi.org/10.1134/S0006297916010028

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916010028

Keywords

Navigation