Skip to main content
Log in

FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: Photooxidation of the primary electron donor

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Photochemical oxidation of the primary electron donor P in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (C.) aurantiacus was examined by light-induced Fourier transform infrared (FTIR) difference spectroscopy at 95 K in the spectral range of 4000–1200 cm−1. The light-induced P+Q A /PQA IR spectrum of C. aurantiacus RCs is compared to the well-characterized FTIR difference spectrum of P photooxidation in the purple bacterium Rhodobacter (R.) sphaeroides R-26 RCs. The presence in the P+Q A /PQA FTIR spectrum of C. aurantiacus RCs of specific low-energy electronic transitions at ∼2650 and ∼2200 cm−1, as well as of associated vibrational (phase-phonon) bands at 1567, 1481, and 1294–1285 cm−1, indicates that the radical cation P+ in these RCs has dimeric structure, with the positive charge distributed between the two coupled bacteriochlorophyll a molecules. The intensity of the P+ absorbance band at ∼1250 nm (upon chemical oxidation of P at room temperature) in C. aurantiacus RCs is approximately 1.5 times lower than that in R. sphaeroides R-26 RCs. This fact, together with the decreased intensity of the absorbance band at ∼2650 cm−1, is interpreted in terms of the weaker coupling of bacteriochlorophylls in the P+ dimer in C. aurantiacus compared to R. sphaeroides R-26. In accordance with the previous (pre)resonance Raman data, FTIR measurements in the carbonyl stretching region show that in C. aurantiacus RCs (i) the 131-keto C=O groups of PA and PB molecules constituting the P dimer are not involved in hydrogen bonding in either neutral or photooxidized state of P and (ii) the 31-acetyl C=O group of PB forms a hydrogen bond (probably with tyrosine M187) absorbing at 1635 cm−1. Differential signals at 1757(+)/1749(−) and 1741(+)/1733(−) cm−1 in the FTIR spectrum of C. aurantiacus RCs are attributed to the 133-ester C=O groups of P in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔA:

change in absorbance

BChl:

bacteriochlorophyll

BPheo:

bacteriopheophytin

Em :

midpoint redox potential

FTIR spectroscopy:

Fourier transform infrared spectroscopy

HOMO:

highest occupied molecular orbital

P:

primary electron donor, a dimer of BChl molecules

PA and PB :

BChl molecules comprising P

QA :

primary quinone acceptor

RC:

reaction center

References

  1. Shuvalov, V. A. (1990) Primary Light Energy Conversion during Photosynthesis [in Russian], Nauka, Moscow.

    Google Scholar 

  2. Feick, R., Shiozawa, J. A., and Ertlmaier, A. (1995) in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds.) Kluwer Academic Publishers, Dordrecht, pp. 699–708.

    Google Scholar 

  3. Lancaster, C. R. D., Ermler, U., and Michel, H. (1995) in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds.) Kluwer Academic Publishers, Dordrecht, pp. 503–526.

    Google Scholar 

  4. Ovchinnikov, Yu. A., Abdulaev, N. G., Zolotarev, A. S., Shmukler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., and Levina, N. B. (1988) FEBS Lett., 231, 237–242.

    Article  PubMed  CAS  Google Scholar 

  5. Ovchinnikov, Yu. A., Abdulaev, N. G., Shmuckler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., Levina, N. B., and Zolotarev, A. S. (1988) FEBS Lett., 232, 364–368.

    Article  PubMed  CAS  Google Scholar 

  6. Shiozawa, J. A., Lottspeich, F., Oesterhelt, D., and Feick, R. (1989) Eur. J. Biochem., 180, 75–84.

    Article  PubMed  CAS  Google Scholar 

  7. Bruce, B. D., Fuller, R. C., and Blankenship, R. E. (1982) Proc. Natl. Acad. Sci. USA, 79, 6532–6536.

    Article  PubMed  CAS  Google Scholar 

  8. Den Blanken, H. J., Vasmel, H., Jongenelis, A. P. J. M., Hoff, A. J., and Amesz, J. (1983) FEBS Lett., 161, 185–189.

    Article  Google Scholar 

  9. Ivancich, A., Feick, R., Ertlmaier, A., and Mattioli, T. A. (1996) Biochemistry, 35, 6126–6135.

    Article  PubMed  CAS  Google Scholar 

  10. Yurkova, E. V., Tsygannik, I. N., Zargarov, A. G., Zolotarev, A. S., Abdulaev, N. G., and Demin, V. V. (1989) FEBS Lett., 256, 167–169.

    Article  CAS  Google Scholar 

  11. Feick, R., Ertlmaier, A., and Ermler, U. (1996) FEBS Lett., 396, 161–164.

    Article  PubMed  CAS  Google Scholar 

  12. Lutz, M., and Mantele, W. (1991) in Chlorophylls (Scheer, H., ed.) CRC Press, Boca Raton, FL, pp. 855–902.

    Google Scholar 

  13. Breton, J., Nabedryk, E., and Parson, W. W. (1992) Biochemistry, 31, 7503–7510.

    Article  PubMed  CAS  Google Scholar 

  14. Nabedryk, E., Allen, J. P., Taguchi, A. K. W., Williams, J. C., Woodbury, N. W., and Breton, J. (1993) Biochemistry, 32, 13879–13885.

    Article  PubMed  CAS  Google Scholar 

  15. Nabedryk, E., Leibl, W., and Breton, J. (1996) Photosynth. Res., 48, 301–308.

    Article  CAS  Google Scholar 

  16. Spiedel, D., Roszak, A. W., McKendrick, K., McAuley, K. E., Fyfe, P. K., Nabedryk, E., Breton, J., Robert, B., Cogdell, R. J., Isaacs, N. W., and Jones, M. R. (2002) Biochim. Biophys. Acta, 1554, 75–93.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, E. T., Muh, F., Nabedryk, E., Williams, J. C., Allen, J. P., Lubitz, W., Breton, J., and Parson, W. W. (2002) J. Phys. Chem. B., 106, 11859–11869.

    Article  CAS  Google Scholar 

  18. Pierson, B. K., and Thornber, J. P. (1983) Proc. Natl. Acad. Sci. USA, 80, 80–84.

    Article  PubMed  CAS  Google Scholar 

  19. Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Biochim. Biophys. Acta, 849, 337–346.

    Article  CAS  Google Scholar 

  20. Zabelin, A. A., Shkuropatova, V. A., Shuvalov, V. A., and Shkuropatov, A. Ya. (2011) Biochim. Biophys. Acta, 1807, 1013–1021.

    Article  PubMed  CAS  Google Scholar 

  21. Zabelin, A. A., Fufina, T. Yu., Vasilieva, L. G., Shkuropatova, V. A., Zvereva, M. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2009) Biochemistry (Moscow), 74, 68–74.

    Article  CAS  Google Scholar 

  22. McElroy, J. D., Mauzerall, D. C., and Feher, G. (1974) Biochim. Biophys. Acta, 333, 261–277.

    Article  PubMed  CAS  Google Scholar 

  23. Vasmel, H., Amesz, J., and Hoff, A. J. (1986) Biochim. Biophys. Acta, 852, 159–168.

    Article  CAS  Google Scholar 

  24. Breton, J., and Nabedryk, E. (1993) Chem. Phys. Lett., 213, 571–575.

    Article  CAS  Google Scholar 

  25. Scherer, P. O. J., and Fischer, S. F. (1987) Biochim. Biophys. Acta, 891, 157–164.

    Article  CAS  Google Scholar 

  26. Yakovlev, A. G., Shkuropatova, T. A., Vasilieva, L. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2008) J. Bioinf. Comput. Biol., 6, 643–666.

    Article  CAS  Google Scholar 

  27. Parson, W. W. (1978) in The Photosynthetic Bacteria (Clayton, R. K., and Sistrom, W. R., eds.) Plenum Press, N. Y., pp. 455–469.

    Google Scholar 

  28. Reimers, J. R., and Hush, N. S. (2003) J. Chem. Phys., 119, 3262–3277.

    Article  CAS  Google Scholar 

  29. Breton, J., Bauscher, M., Berthomieu, C., Thibodeau, D., Andrianambinintsoa, S., Dejonghe, D., Mantele, W., and Nabedryk, E. (1991) in Spectroscopy of Biological Molecules (Hester, R. E., and Girling, R. B., eds.) The Royal Society of Chemistry, Cambridge, pp. 43–46.

    Google Scholar 

  30. Venturoli, G., Trotta, M., Feick, R., Melandri, B. A., and Zannoni, D. (1991) Eur. J. Biochem., 202, 625–634.

    Article  PubMed  CAS  Google Scholar 

  31. Mantele, W., Nabedryk, E., Tavitian, B. A., Kreutz, W., and Breton, J. (1985) FEBS Lett., 187, 227–232.

    Article  Google Scholar 

  32. Reed, D. W. (1969) J. Biol. Chem., 244, 4936–4941.

    PubMed  CAS  Google Scholar 

  33. Muh, F., Rautter, J., and Lubitz, W. (1997) Biochemistry, 36, 4155–4162.

    Article  PubMed  CAS  Google Scholar 

  34. Straley, S. C., Parson, W. W., Mauzerall, D. C., and Clayton, R. K. (1973) Biochim. Biophys. Acta, 305, 597–609.

    Article  PubMed  CAS  Google Scholar 

  35. Mantele, W. G., Wollenweber, A. M., Nabedryk, E., and Breton, J. (1988) Proc. Natl. Acad. Sci. USA, 85, 8468–8472.

    Article  PubMed  CAS  Google Scholar 

  36. Nabedryk, E., Robles, S. J., Goldman, E., Youvan, D. C., and Breton, J. (1992) Biochemistry, 31, 10852–10858.

    Article  PubMed  CAS  Google Scholar 

  37. Shuvalov, V. A., and Parson, W. W. (1981) Proc. Natl. Acad. Sci. USA, 78, 957–961.

    Article  PubMed  CAS  Google Scholar 

  38. Reimers, J. R., and Hush, N. S. (1995) J. Am. Chem. Soc., 117, 1302–1308.

    Article  CAS  Google Scholar 

  39. Plato, M., Lendzian, F., Lubitz, W., and Mobius, K. (1992) in The Photosynthetic Bacterial Reaction Center II (Breton, J., and Vermeglio, A., eds.) Plenum Press, N. Y., pp. 109–118.

    Chapter  Google Scholar 

  40. Muh, F., Lendzian, F., Roy, M., Williams, J. C., Allen, J. P., and Lubitz, W. (2002) J. Phys. Chem. B, 106, 3226–3236.

    Article  Google Scholar 

  41. Reimers, J. R., Hughes, J. M., and Hush, N. S. (2000) Biochemistry, 39, 16185–16189.

    Article  PubMed  CAS  Google Scholar 

  42. Parson, W. W., and Warshel, A. (1987) J. Am. Chem. Soc., 109, 6152–6163.

    Article  CAS  Google Scholar 

  43. Klevanik, A. V., Ganago, A. O., Shkuropatov, A. Ya., and Shuvalov, V. A. (1988) FEBS Lett., 237, 61–64.

    Article  CAS  Google Scholar 

  44. Thompson, M. A., Zerner, M. C., and Fajer, J. (1991) J. Phys. Chem., 95, 5693–5700.

    Article  CAS  Google Scholar 

  45. Johnson, E. T., Nagarajan, V., Zazubovich, V., Riley, K., Small, G. J., and Parson, W. W. (2003) Biochemistry, 42, 13673–13683.

    Article  PubMed  CAS  Google Scholar 

  46. Lendzian, F., Huber, M., Isaacson, R. A., Endeward, B., Plato, M., Bonigk, B., Mobius, K., Lubitz, W., and Feher, G. (1993) Biochim. Biophys. Acta, 1183, 139–160.

    Article  CAS  Google Scholar 

  47. Mattioli, T. A., Hoffmann, A., Robert, B., Schrader, B., and Lutz, M. (1991) Biochemistry, 30, 4648–4654.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Shkuropatov.

Additional information

Original Russian Text © A. A. Zabelin, V. A. Shkuropatova, V. A. Shuvalov, A. Ya. Shkuropatov, 2012, published in Biokhimiya, 2012, Vol. 77, No. 2, pp. 196–204.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM11-267, January 8, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabelin, A.A., Shkuropatova, V.A., Shuvalov, V.A. et al. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: Photooxidation of the primary electron donor. Biochemistry Moscow 77, 157–164 (2012). https://doi.org/10.1134/S000629791202006X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791202006X

Key words

Navigation