Skip to main content
Log in

Incentive Compatibility and Strategy-Proofness of Mechanisms of Organizational Behavior Control: Retrospective, State of the Art, and Prospects of Theoretical Research

  • SURVEY ARTICLES
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We describe prerequisites for the emergence of the key concept of incentive compatibility in the theory of active systems and mechanism design and give a survey of approaches to this problem, which have led to stating the fair play and revelation principles, and of current trends in this branch of scientific knowledge. Potential difficulties and development prospects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Burkov, V.N. and Lerner, A.Y., Open control principle for active systems, Autom. Remote Control, 1970, no. 8, pp. 1288–1297.

  2. Nemchinov, V.S., Socialist management and production planning, Kommunist, 1964, no. 5, pp. 77–78.

  3. Samuelson, P.A., The pure theory of public expenditure, Rev. Econ. Stat., 1954, vol. 36, no. 4, pp. 387–389.

    Article  Google Scholar 

  4. Marschak, J., Elements for a theory of teams, Manage. Sci., 1955, vol. 1, no. 2, pp. 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  5. Arrow, K.J., Social Choice and Individual Values, Chicago: Univ. Chicago, 1951.

    MATH  Google Scholar 

  6. Hurwicz, L., Optimality and informational efficiency in resource allocation processes, in Mathematical Methods in the Social Sciences, 1960, pp. 27–46.

  7. Lerner, A., Change of heart, Balaban Int. Sci. Serv., 1992.

  8. Burkov, V.N. and Lerner, A.Ya., Fairplay in control of active systems, in Differential Games and Related Topics, Amsterdam–London: North-Holland, 1971, pp. 164–168.

  9. Burkov, V.N., Yenaleev, A.K., Kondrat’ev, V.V., et al., Regular functioning mechanisms of organizational systems, Prepr. “Control Science and Technology for the Progress of Society,” Int. Fed. Autom. Control, 8th Trienn. World Congr. (Kyoto, Japan, 1981), vol. ÕII. pp. 31–37.

  10. Burkov, V.N. and Novikov, D.A., Theory of active systems 50 years later: a history of development, in Teoriya aktivnykh sistem – 50 let. Mater. mezhdunar. nauchno-prakt. konf. (Theory of Active Systems—50 Years Later. Proc. Int. Sci.-Pract. Conf.), Burkov, V.N., Ed., (November 18–19, 2019) Moscow: Inst. Probl. Upr. Ross. Akad. Nauk, 2019, pp. 10–54.

  11. Burkov, V.N., Gubko, M.V., Korgin, N.A., and Novikov, D.A., Organizational systems management theory and other sciences of organizational management, Probl. Upr., 2012, no. 4, pp. 2–10.

  12. Nobel Prize Committee, Oliver Hart and Bengt Holmström: Contract Theory, Scientific Background on the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel, 2016.

  13. Enaleev, A.K., Incentive compatible control mechanisms in active systems, Upr. Bol’shimi Sist., 2020, no. 83, pp. 5–28.

  14. Korgin, N.A., Strategy-proof mechanisms of decision making in organizational systems management, Doctoral (Eng.) Dissertation, Moscow: Inst. Probl. Upr. Ross. Akad. Nauk, 2014.

  15. Laffont, J.J. and Martimort, D., The Theory of Incentives: the Principal-Agent Model, Princeton: Princeton Univ. Press, 2009.

    Book  Google Scholar 

  16. Aizerman, M.A. and Aleskerov, F.T., Vybor variantov: osnovy teorii (Alternative Choice: Basics of the Theory), Moscow: Nauka, 1990.

    Google Scholar 

  17. Hurwicz, L., The design of mechanisms for resource allocation, Am. Econ. Rev., 1973, vol. 63, no. 2, pp. 1–30.

    Google Scholar 

  18. Burkov, V.N., Osnovy matematicheskoi teorii aktivnykh sistem (Fundamentals of the Mathematical Theory of Active Systems), Moscow: Nauka, 1977.

    Google Scholar 

  19. Koutsoupias, E. and Papadimitriou, C., Worst-case equilibria, Comput. Sci. Rev., 2009, vol. 3, no. 2, pp. 65–69.

    Article  MATH  Google Scholar 

  20. Burkov, V.N., Danev, B., Enaleev, A.K., et al., Bol’shie sistemy: modelirovanie organizatsionnykh mekhanizmov (Large Systems—Modeling Organizational Mechanisms), Moscow: Nauka, 1989.

    MATH  Google Scholar 

  21. Andersson, T., Ehlers, L., and Svensson, L.G., Budget balance, fairness, and minimal manipulability, Theor. Econ., 2014, vol. 9, no. 3, pp. 753–777.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bergemann, D. and Morris, S., Robust mechanism design, Econometrica: J. Econ. Soc., 2005, vol. 73, no. 6, pp. 1771–1813.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kelly, J., Almost all social choice rules are highly manipulable, but few aren’t, Soc. Choice Welfare, 1993, vol. 10, no. 2, pp. 161–175.

    Article  MathSciNet  MATH  Google Scholar 

  24. Jackson, M., Mechanism theory, in The Encyclopedia of Life Support Systems, Oxford: EOLSS, 2003.

  25. Gubko, M.V. and Novikov, D.A., Teoriya igr v upravlenii organizatsionnymi sistemami (Game Theory in Organizational System Management), Moscow: Sinteg, 2002.

    Google Scholar 

  26. Germeier, Yu.B., Igry s neprotivopolozhnymi interesami (Nonzero-Sum Games), Moscow: Nauka, 1978.

    Google Scholar 

  27. Gorelov, M.A. and Kononenko, A.F., Dynamic models of conflicts. III. Hierarchical games, Autom. Remote Control, 2015, vol. 76, no. 2, pp. 264–277.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ougolnitsky, G.A. and Usov, A.B., Solution algorithms for differential models of hierarchical control systems, Autom. Remote Control, 2016, vol. 77, no. 5, pp. 872–880.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gorelov, M.A. and Ereshko, F.I., Hierarchical games in a control system, in Teoriya i praktika sistemnoi dinamiki (Theory and Practice of Systems Dynamics), 2019, p. 44.

    Google Scholar 

  30. Burkov, V.N. and Opoitsev, V.I., Meta-game approach to control of hierarchical systems, Autom. Remote Control, 1974, vol. 35, no. 1, pp. 93–103.

    Article  MathSciNet  MATH  Google Scholar 

  31. Satterthwaite, M.A., Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions, J. Econ. Theory, 1975, vol. 10, no. 2, pp. 187–217.

    Article  MathSciNet  MATH  Google Scholar 

  32. Burkov, V.N., Enaleev, A.K., Kondrat’yev, V.V., et. al., Fundamentals of theory of optimal design for functioning mechanisms of two-level active systems. II, Autom. Remote Control, 1984, vol. 45, no. 11, pp. 1457–1463.

    Google Scholar 

  33. d’Aspremont, C. and Gérard-Varet, L.A., Incentives and incomplete information, J. Public Econ., 1979, vol. 11, no. 1, pp. 25–45.

    Article  Google Scholar 

  34. Dasgupta, P., Hammond, P., and Maskin, E., The implementation of social choice rules: Some general results on incentive compatibility, Rev. Econ. Stud., 1979, vol. 46, no. 2, pp. 185–216.

    Article  MathSciNet  MATH  Google Scholar 

  35. Walker, M., On the nonexistence of a dominant strategy mechanism for making optimal public decisions, Econometrica: J. Econ. Soc., 1980, vol. 46, no. 6, pp. 1521–1540.

    Article  MathSciNet  MATH  Google Scholar 

  36. Burkov, V.N. and Kondrat’ev, V.V., Mekhanizmy funktsionirovaniya organizatsionnykh sistem (Mechanisms of Operation of Organizational Systems), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  37. Burkov, V.N. and Enaleev, A.K., Optimality of the principle of open control. Necessary and sufficient conditions for reliability of information in active systems, Autom. Remote Control, 1985, vol. 46, no. 3, pp. 341–348.

    MathSciNet  MATH  Google Scholar 

  38. Sjöström, T., On the necessary and sufficient conditions for Nash implementation, Soc. Choice Welfare, 1991, vol. 8, no. 4, pp. 333–340.

    Article  MathSciNet  MATH  Google Scholar 

  39. Mookherjee, D. and Reichelstein, S., Dominant strategy implementation of Bayesian incentive compatible allocation rules, J. Econ. Theory, 1992, vol. 56, no. 2, pp. 378–399.

    Article  MathSciNet  MATH  Google Scholar 

  40. Savvateev, A., Coalition-proof incentive contracts, in CORE, MIMEO, 2006.

  41. Izmalkov, S., Lepinski, M., and Micali, S., Perfect implementation, Games Econ. Behav., 2011, vol. 71, no. 1, pp. 121–140.

    Article  MathSciNet  MATH  Google Scholar 

  42. Novikov, D.A., Optimality of correct mechanisms of control of active systems, Autom. Remote Control, 1997, vol. 58, no. 2, pp. 278–283.

    MathSciNet  MATH  Google Scholar 

  43. Myerson, R.B., Optimal auction design, Math. Oper. Res., 1981, vol. 6, no. 1, pp. 58–73.

    Article  MathSciNet  MATH  Google Scholar 

  44. Roughgarden, T. and Talgam-Cohen, I., Approximately optimal mechanism design, Annu. Rev. Econ., 2019, vol. 11, pp. 355–381.

    Article  Google Scholar 

  45. Burkov, V.N., Enaleev, A.K., and Novikov, D.A., Operation mechanisms of social economic systems with information generalization, Autom. Remote Control, 1996, vol. 57, no. 3, pp. 305–321.

    MATH  Google Scholar 

  46. Novikov, D.A., Teoriya upravleniya organizatsionnymi sistemami, 3-e izd. (Theory of Control of Organizational Systems), Moscow: Fizmatlit, 2012.

    Google Scholar 

  47. Moulin, H., On strategy-proofness and single-peakedness, Public Choice, 1980, vol. 35, no. 4, pp. 437–455.

    Article  Google Scholar 

  48. Le Breton, M. and Zaporozhets, V., On the equivalence of coalitional and individual strategy-proofness properties, Soc. Choice Welfare, 2009, vol. 33, no. 2, pp. 287–309.

    Article  MathSciNet  MATH  Google Scholar 

  49. Barberà, S., Berga, D., and Moreno, B., Individual versus group strategy-proofness: when do they coincide?, J. Econ. Theory, 2010, vol. 145, no. 5, pp. 1648–1674.

    Article  MathSciNet  MATH  Google Scholar 

  50. Petrakov, S.N., Mekhanizmy planirovaniya v aktivnykh sistemakh: nemanipuliruemost’ i mnozhestva diktatorstva (Scheduling Mechanisms in Active Systems: Nonmanipulability and Dictatorship Sets), Moscow: Inst. Probl. Upr. Ross. Akad. Nauk, 2001.

    Google Scholar 

  51. Holmström, B., On Incentives and Control in Organizations, Stanford: Stanford Univ., 1977.

    Google Scholar 

  52. Myerson, R.B., Incentive compatibility and the bargaining problem, Econometrica: J. Econ. Soc., 1979, vol. 47, no. 1, pp. 61–73.

    Article  MathSciNet  MATH  Google Scholar 

  53. Nikolenko, S.I., Teoriya ekonomicheskikh mekhanizmov (Theory of Economic Mechanisms), Moscow: Binom. Lab. Znanii, 2009.

    Google Scholar 

  54. Milgrom, P. and Roberts, J., Economics, Organization and Management, Pearson, 1992. Translated under the title: Ekonomika, organizatsiya i menedzhment: v 2-kh t. T. 1 , St. Petersburg: Ekon. Shkola, 1999.

  55. Gibbard, A., Manipulation of voting schemes: a general result, Econometrica: J. Econ. Soc., 1973, vol. 41, no. 4, pp. 587–601.

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhou, L., Impossibility of strategy-proof mechanisms in economies with pure public goods, Rev. Econ., 1991, vol. 58, no. 1, pp. 107–119.

    MathSciNet  MATH  Google Scholar 

  57. Moulin, H., One-dimensional mechanism design, Theor. Econ., 2017, vol. 12, no. 2, pp. 587–619.

    Article  MathSciNet  MATH  Google Scholar 

  58. Myerson, R.B., Optimal auction design, Math. Oper. Res., 1981, vol. 6, no. 1, pp. 58–73.

    Article  MathSciNet  MATH  Google Scholar 

  59. Barberà, S., Theoretical unification, domain restrictions and further applications: some comments on future research in economic design, in The Future of Economic Design, Laslier, J.-F. et al., Eds., Cham: Springer, 2019, pp. 21–25.

  60. Barberà, S., Masso, J., and Neme, A., Voting under constraints, J. Econ. Theory, 1997, vol. 76, pp. 298–321.

    Article  MathSciNet  MATH  Google Scholar 

  61. Barberá, S., Masso, J., and Serizawa, S., Strategy-proof voting on compact ranges, Games Econ. Behav., 1998, vol. 25, pp. 272–291.

    Article  MathSciNet  MATH  Google Scholar 

  62. Nehring, K. and Puppe, C., Efficient and strategy-proof voting rules: a characterization, Games Econ. Behav., 2007, vol. 59, no. 1, pp. 132–153.

    Article  MathSciNet  MATH  Google Scholar 

  63. Peters, H., van der Stel, H., and Storcken, T., Pareto optimality, anonymity, and strategy-proofness in location problems, Int. J. Game Theory, 1992, vol. 21, no. 3, pp. 221–235.

    Article  MathSciNet  MATH  Google Scholar 

  64. Green, J.R. and Laffont, J.J., Incentives in Public Decision Making, Amsterdam: North-Holland, 1979.

    MATH  Google Scholar 

  65. Walker, M., A simple incentive compatible scheme for attaining Lindahl allocations, Econometrica: J. Econ. Soc., 1981, vol. 49, no. 1, pp. 65–71.

    Article  MathSciNet  MATH  Google Scholar 

  66. Enaleev, A.K., Development of incentive and control mechanisms in two-level active systems, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Inst. Phys. Technol., 1980.

  67. Novikov, D.A., Optimality of correct mechanisms of control of active systems. II: Incentive mechanisms, Autom. Remote Control, 1997, vol. 58, no. 3, pp. 459–464.

    MATH  Google Scholar 

  68. Enaleev, A.K., Optimal mechanism of functioning in an active system with information exchange, Upr. Bol’shimi Sist., 2010, no. 29, pp. 108–127.

  69. Enaleev, A.K., Optimal incentive-compatible mechanisms in active systems, Autom. Remote Control, 2013, vol. 74, no. 3, pp. 491–505.

    Article  MathSciNet  MATH  Google Scholar 

  70. Enaleev, A.K., Optimal incentive compatible mechanisms in active systems and problems in contract theory, Upr. Bol’shimi Sist., 2014, no. 49, pp. 167–182.

  71. Enaleev, A.K., Optimal incentive compatible mechanism in a system with several active elements, Autom. Remote Control, 2017, vol. 78, no. 1, pp. 146–158.

    Article  MathSciNet  MATH  Google Scholar 

  72. Enaleev, A.K., Optimality of incentive compatible mechanisms in network organizational structures, Probl. Upr., 2020, no. 1, pp. 24–38.

  73. Aleskerov, F., Arrovian Aggregation Models, Dordrecht: Kluwer, 1999.

    Book  MATH  Google Scholar 

  74. Le Breton, M. and Sen, A., Separable preferences, strategy proofness, and decomposability, Econometrica, 1999, vol. 67, no. 3, pp. 605–628.

    Article  MathSciNet  MATH  Google Scholar 

  75. Le Breton, M. and Weymark, J.A., Strategy-proof social choice with continuous separable preferences, J. Math. Econ., 1999, vol. 32, no. 1, pp. 47–85.

    Article  MathSciNet  MATH  Google Scholar 

  76. Danilov, V.I. and Sotskov, A.I., Mekhanizmy gruppovogo vybora (Multiple Selection Mechanisms), Moscow: Nauka, 1991.

    Google Scholar 

  77. Maskin, E.S., Mechanism design: How to implement social goals, Am. Econ. Rev., 2008, vol. 98, no. 3, pp. 567–576.

    Article  Google Scholar 

  78. Weymark, J.A., A unified approach to strategy-proofness for single-peaked preferences, SERIEs, 2011, vol. 2, no. 4, pp. 529–550.

    Article  Google Scholar 

  79. Barberá, S., Strategy-proof social choice, in Handbook of Social Choice and Welfare. Vol. 2 , 2011, pp. 731–831.

  80. Berga, D., Strategy-proofness and single-plateaued preferences, Math. Soc. Sci., 1998, vol. 35, no. 2, pp. 105–120.

    Article  MathSciNet  MATH  Google Scholar 

  81. Barberá, S., Jackson, M., and Neme, A., Strategy-proof allotment rules, Games Econ. Behav., 1997, vol. 18, no. 1, pp. 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  82. Sprumont, Y., The division problem with single-peaked preferences: a characterization of the uniform rule, Econometrica, 1991, vol. 59, no. 2, pp. 509–519.

    Article  MathSciNet  MATH  Google Scholar 

  83. Korgin, N.A., Representing a sequential allotment rule in the form of a strategy-proof mechanism of multicriteria active expertise, Autom. Remote Control, 2014, vol. 75, no. 5, pp. 983–995.

    Article  MathSciNet  MATH  Google Scholar 

  84. Burkov, V.N., Gorgidze, I.I., Novikov, D.A., and Yusupov, B.S., Modeli i mekhanizmy raspredeleniya zatrat i dokhodov v rynochnoi ekonomike (Models and Mechanisms of Cost and Income Allotment in a Market Economy), Moscow: Inst. Probl. Upr. Ross. Akad. Nauk, 1997.

    Google Scholar 

  85. Korgin, N.A., Equivalence and strategy-proofness of non-anonymous priority allotment mechanisms, Autom. Remote Control, 2016, vol. 77, no. 11, pp. 2065–2079.

    Article  MathSciNet  Google Scholar 

  86. Border, K. and Jordan, J., Straightforward elections, unanimity and phantom voters, Rev. Econ., 1983, vol. 50, pp. 153–170.

    MathSciNet  MATH  Google Scholar 

  87. Bondarik, V.N. and Korgin, N.A., The use of the block method to determine the admissible nonmanipulable mechanisms of active examination when solving the resource allotment problem, Sist. Upr. Inf. Tekhnol., 2012, no. 4(50), pp. 40–44.

  88. Barberà, S. and Jackson, M.O., Strategy-proof exchange, Econometrica: J. Econ. Soc., 1995, vol. 63, no. 1, pp. 51–87.

    Article  MATH  Google Scholar 

  89. Korgin, N.A., Incentive problems and exchange schemes, Autom. Remote Control, 2001, vol. 62, no. 10, pp. 1673–1679.

    Article  MathSciNet  MATH  Google Scholar 

  90. Bondarik, V.N. and Korgin, N.A., Resource allotment mechanisms based on strategy-proof symmetric anonymous voting procedures with delegation, Probl Upr., 2012, no. 5, pp. 26–32.

  91. Burkov, V.N., Gratsianskii, E.V., Enaleev, A.K., and Umrikhina, E.V., Organizatsionnye mekhanizmy upravleniya nauchno-tekhnicheskimi programmami (Organizational Mechanisms for Managing Scientific and Technical Programs), Moscow: Inst. Probl. Upr. Ross. Akad. Nauk, 1993.

    Google Scholar 

  92. Vickrey, W., Counterspeculation, auctions, and competitive sealed tenders, J. Finance, 1961, vol. 16, no. 1, pp. 8–37.

    Article  MathSciNet  Google Scholar 

  93. Groves, T., Incentives in teams, Econometrica: J. Econ. Soc., 1973, vol. 41, no. 4, pp. 617–631.

    Article  MathSciNet  MATH  Google Scholar 

  94. Clarke, E.H., Multipart pricing of public goods, Public Choice, 1971, vol. 11, no. 1, pp. 17–33.

    Article  Google Scholar 

  95. Roberts, K., The characterization of implementable choice rules, Aggregation Revelation Preferences, 1979, vol. 12, no. 2, pp. 321–348.

    MATH  Google Scholar 

  96. Lavi, R., Mu’alem, A., and Nisan, N., Two simplified proofs for Roberts’ theorem, Soc. Choice Welfare, 2009, vol. 32, no. 3, p. 407.

    Article  MathSciNet  MATH  Google Scholar 

  97. Sen, A., Some issues in mechanism design theory, in The Future of Economic Design, Laslier, J.-F. et al., Eds., Cham: Springer, 2019, pp. 355–357.

  98. Enaleev, A.K. and Lavrov, Yu.G., Optimal incentives in an active system with a stochastic element, Autom. Remote Control, 1990, vol. 51, no. 2, pp. 223–231.

    MATH  Google Scholar 

  99. Bolton, P. and Dewatripont, M., Contract Theory, Cambridge, M.A.–London: MIT Press, 2005.

    Google Scholar 

  100. Korgin, N.A. and Korepanov, V.O., An efficient solution of the resource allotment problem with the Groves–Ledyard mechanism under transferable utility, Autom. Remote Control, 2016, vol. 77, no. 5, pp. 914–942.

    Article  MathSciNet  MATH  Google Scholar 

  101. Groves, T. and Ledyard, J.O., The existence of efficient and incentive compatible equilibria with public goods, Econometrica: J. Econ. Soc., 1980, vol. 48, no. 6, pp. 1487–1506.

    Article  MathSciNet  MATH  Google Scholar 

  102. Arifovic, J. and Ledyard, J.O., A behavioral model for mechanism design: Individual evolutionary learning, J. Econ. Behav. Organ., 2011, no. 78, pp. 375–395.

  103. Mathevet, L., Supermodular mechanism design, Theor. Econ. Econometric Soc., 2010, vol. 5(3), pp. 403–443.

    MathSciNet  MATH  Google Scholar 

  104. Maheswaran, R.T. and Baar, T., Nash equilibrium and decentralized negotiation in auctioning divisible resources, Group Dec. Negotiation, 2003, vol. 12, no. 5, pp. 361–395.

    Article  Google Scholar 

  105. Yang, S. and Hajek, B., Revenue and stability of a mechanism for efficient allocation of a divisible good, Preprint, 2005.

  106. Yang, S. and Hajek, B., VCG-Kelly mechanisms for allocation of divisible goods: adapting VCG mechanisms to one-dimensional signals, IEEE J. Selected Areas Commun., 2007, vol. 25, no. 6, pp. 1237–1243.

    Article  Google Scholar 

  107. Boyd, S., Parikh, N., and Chu, E., Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Now Publ., 2011.

  108. Korgin, N.A. and Korepanov, V.O., Experimental gaming comparison of resource allocation rules in case of transferable utilities, Int. Game Theory Rev., 2017, vol. 19, no. 2, p. 1750006.

    Article  MathSciNet  MATH  Google Scholar 

  109. Korgin, N.A. and Korepanov, V.O., Experimental and theoretical comparison of several resource allocation mechanisms, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 15592–15597.

    Article  Google Scholar 

  110. Moulin, H., Fair division in the Internet age, Annu. Rev. Econ., 2019, vol. 11, pp. 407–441.

    Article  Google Scholar 

  111. The Future of Economic Design, Laslier, J.-F., et al., Eds., Cham: Springer, 2019.

  112. Hammond, P.J., Allocation mechanisms, incentives, and endemic institutional externalities, in Social Design, Cham: Springer, 2019, pp. 175–186.

  113. Novikov, D., Korepanov, V., and Chkhartishvili, A., Reflexion in mathematical models of decision-making, Int. J. Parallel Emergent Distrib. Syst., 2018, vol. 33, no. 3, pp. 319–335.

    Article  Google Scholar 

  114. Carroll, G., Design for weakly structured environments, in The Future of Economic Design, Laslier, J.-F. et al., Eds., Cham: Springer, 2019, pp. 27–33.

  115. Carroll, G., Robustness in mechanism design and contracting, Annu. Rev. Econ., 2019, vol. 11, pp. 139–166.

    Article  Google Scholar 

  116. Zhang, L. and Levin, D., Bounded rationality and robust mechanism design: an axiomatic approach, Am. Econ. Rev., 2017, vol. 107, no. 5, pp. 235–239.

    Article  Google Scholar 

  117. Bochet, O., From the revelation principle to the principles of revelation, in The Future of Economic Design, Laslier, J.-F. et al., Eds., Cham: Springer, 2019, pp. 311–315.

  118. Bochet, O. and Tumennasan, N., Dominance of truthtelling and the lattice structure of Nash equilibria, J. Econ., 2020, vol. 185, p. 104952.

    MathSciNet  MATH  Google Scholar 

  119. Algorithmic Game Theory, Nisan, N. et al., Eds., Cambridge: Cambridge Univ. Press, 2007.

  120. Roughgarden, T., Complexity-theoretic barriers in economics, in The Future of Economic Design, Laslier, J.-F. et al., Eds., Cham: Springer, 2019, pp. 159–163.

  121. Milgrom, P. and Segal, I., Clock auctions and radio spectrum reallocation, J. Political Econ., 2020, vol. 128, no. 1, pp. 1–31.

    Article  Google Scholar 

  122. Roughgarden, T. and Talgam-Cohen, I., Approximately optimal mechanism design, Annu. Rev. Econ., 2019, vol. 11, pp. 355–381.

    Article  Google Scholar 

  123. Veselova, Y.A., Computational complexity of manipulation: a survey, Autom. Remote Control, 2016, vol. 77, no. 3, pp. 369–388.

    Article  MathSciNet  MATH  Google Scholar 

  124. Veselova, Y.A., Does incomplete information reduce manipulability?, Group Dec. Negotiation, 2020, vol. 29, no. 3, pp. 523–548.

    Article  Google Scholar 

  125. Chirkin, V. et al., Gaming experiments for analysis of pricing mechanisms at electricity markets, IFAC-PapersOnLine, 2016, vol. 49, no. 32, pp. 13–18.

    Article  MathSciNet  Google Scholar 

  126. Thomson, W., On the axiomatics of resource allocation: classifying axioms and mapping out promising directions, in The Future of Economic Design, Laslier, J.-F. et al., Eds., Cham: Springer, 2019, pp. 213–222.

  127. Dasgupta, P. and Maskin, E., Strategy-proofness, IIA, and majority rule, Am. Econ. Rev.: Insights, 2020, vol. 2, no. 4, pp. 459–474.

    Google Scholar 

Download references

Funding

The research was financially supported by the Russian Foundation for Basic Research, project no. 19-17-50190.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Burkov, A. K. Enaleev or N. A. Korgin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkov, V.N., Enaleev, A.K. & Korgin, N.A. Incentive Compatibility and Strategy-Proofness of Mechanisms of Organizational Behavior Control: Retrospective, State of the Art, and Prospects of Theoretical Research. Autom Remote Control 82, 1119–1143 (2021). https://doi.org/10.1134/S0005117921070018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921070018

Keywords

Navigation