Skip to main content
Log in

Model containing coupled subsystems with oscillations of different types

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to an autonomous model containing coupled subsystems (MCCS) and, in the absence of couplings between the subsystems, falling down into systems of ordinary differential equations. It is assumed that the subsystems admit different types of nondegenerate single-frequency oscillations. Solved were the problems of oscillations in MCCS, their stability, and stabilization of MCCS oscillation by smooth autonomous coupling controls. It was shown how the developed theory is applied to the coupled Duffing and Van der Pol oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rompala, K., Rand, R., and Howland, H., Dynamics of Three Coupled Van der Pol Oscillators with Application to Circadian Rhythms, Commun. Nonlin. Sci. Numer. Simul., 2007, vol. 12, no. 5, pp. 794–803.

    Article  MathSciNet  MATH  Google Scholar 

  2. Yakushevich, L.V., Gapa, S., and Awrejcewicz, J., Mechanical Analog of the DNA Base Pair Oscillations, in 10th Conf. on Dynamical Systems Theory and Applications, Lodz: Left Grupa, 2009, pp. 879–886.

    Google Scholar 

  3. Kondrashov, R.E. and Morozov, A.D., On Studying Resonances in the System of two Duffing-Van der pol Equations, Nelin. Dinam., 2010, vol. 6, no. 2, pp. 241–254.

    Article  Google Scholar 

  4. Danzl, P. and Moehlis, J., Weakly Coupled Parametrically Forced Oscillator Networks: Existence, Stability, and Symmetry of Solutions, Nonlin. Dynam., 2010, vol. 59, no. 4, pp. 661–680.

    MATH  Google Scholar 

  5. Kuznetsov, A.P., Sataev, I.R., and Tyuryukina, L.V., Forced Synchronization of two Coupled Autooscillation Van der Pol Oscillators, Nelin. Dinam., 2011, vol. 7, no. 3, pp. 411–425.

    Article  Google Scholar 

  6. Lazarus, L. and Rand, R.H., Dynamics of a System of Two Coupled Oscillators which are Driven by a Third Oscillator, J. Appl. Nonlin. Dynam., 2014, vol. 3, no. 3, pp. 271–282.

    Article  Google Scholar 

  7. Kawamura, Y., Collective Phase Dynamics of Globally Coupled Oscillators: Noise-induced Anti-phase Synchronization, Phys. D: Nonlin. Phenom., 2014, vol. 270, no. 1, pp. 20–29.

    Article  MathSciNet  MATH  Google Scholar 

  8. Peng Du and Michael Y.Li., Impact of Network Connectivity on the Synchronization and Global Dynamics of Coupled Systems of Differential Equations, Phys. D: Nonlin. Phenom., 2014, vols. 286–287, pp. 32–42.

    MathSciNet  MATH  Google Scholar 

  9. Buono, P.-L., Chan, B.S., Palacios, A., et al., Dynamics and Bifurcations in a Dn-symmetric Hamiltonian Network. Application to Coupled Gyroscopes, Phys. D: Nonlin. Phenom., 2015, vol. 290, no. 1, pp. 8–23.

    Article  Google Scholar 

  10. Tkhai, V.N., Model with Coupled Subsystems, Autom. Remote Control, 2013, vol. 74, no. 6, pp. 919–931.

    Article  MathSciNet  MATH  Google Scholar 

  11. Matrosov, V.M., The Method of Vector Lyapunov Functions in Analysis of Composite Systems with Distributed Parameters (Survey), Autom. Remote Control, 1973, vol. 34, no. 1, pp. 1–15.

    MathSciNet  MATH  Google Scholar 

  12. Metod vektornykh funktsii Lyapunova v teorii ustoichivosti (Method of Lyapunov Vector Functions in the Stability Theory), Voronov, A.A. and Matrosov, V.M., Eds., Moscow: Nauka, 1987.

  13. Matrosov, V.M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem (Method of Lyapunov Vector Functions: Analysis of the Dynamic Properties of Nonlinear Systems), Moscow: Fizmatlit, 2001.

    Google Scholar 

  14. Merkin, D.R., Giroskopicheskie sistemy (Gyro Systems), Moscow: Nauka, 1974.

    Google Scholar 

  15. Zubov, V.I., Analiticheskaya dinamika sistemy tel (Analytical Dynamics of a Body System), Leningrad: Leningr. Gos. Univ., 1983.

    MATH  Google Scholar 

  16. Pyatnitskii, E.S., Principle of Decomposition in the Control of Mechanical Systems, Dokl. Akad. Nauk SSSR, 1988, vol. 300, no. 2, pp. 300–303.

    MathSciNet  Google Scholar 

  17. Siljak, D.D., Decentralized Control of Complex Systems, Cambridge: Academic, 1991. Translated under the title Detsentralizovannoe upravlenie slozhnymi sistemami, Moscow: Mir, 1994.

    MATH  Google Scholar 

  18. Chernous’ko, F.L., Anan’evskii, I.M., and Reshmin, S.A., Metody upravleniya nelineinymi mekhanicheskimi sistemami (Methods to Control Nonlinear Mechanical Systems), Moscow: Fizmatlit, 2006.

    Google Scholar 

  19. Barabanov, I.N., Tureshbaev, A.T., and Tkhai, V.N., Basic Oscillation Mode in the Coupled-Subsystems Model, Autom. Remote Control, 2014, vol. 75, no. 12, pp. 2112–2123.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tkhai, V.N., Oscillations in the Autonomous Model Containing Coupled Subsystems, Autom. Remote Control, 2015, vol. 76, no. 1, pp. 64–71.

    Article  MathSciNet  MATH  Google Scholar 

  21. Tkhai, V.N., Oscillations,Stability and Stabilization in the Model Containing Coupled Subsystems with Cycles, Autom. Remote Control, 2015, vol. 76, no. 7, pp. 1169–1178.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tkhai, V.N., A Mechanical System Containing Weakly Coupled Subsystems, J. Appl. Math. Mech., 2013, vol. 77, no. 6, pp. 588–594.

    Article  MathSciNet  MATH  Google Scholar 

  23. Tkhai, V.N., Periodic Motions of the Perturbed Reversible Mechanical System, J. Appl. Math. Mech., 2015, vol. 79, no. 2, pp. 122–131.

    Article  MathSciNet  MATH  Google Scholar 

  24. Malkin, I.G., Teoriya ustoichivosti dvizheniya (Theory of Motion Stability), Moscow: Nauka, 1966.

    Google Scholar 

  25. Barabanov, I.N. and Tkhai, V.N., Oscillation Family in Weakly Coupled Identical Systems, Autom. Remote Control, 2016, vol. 77, no. 4, pp. 561–569.

    Article  MATH  Google Scholar 

  26. Malkin, I.G., Nekotorye zadachi teorii nelineinykh kolebanii (Some Problems of the Theory of Nonlinear Oscillations), Moscow: Gostekhizdat, 1956.

    Google Scholar 

  27. Andronov, A.A. and Vitt, A.A., On Laypunov Stability, Zh. Eksp. Teor. Fiz., 1933, vol. 3, no. 5, pp. 373–374.

    Google Scholar 

  28. Tkhai, V.N., Invertible Mechanical Systems Admitting Two Fixed Sets, in Problemy analiticheskoi mekhaniki i teorii ustoichivosti. Sb. nauchnykh statei, posvyashchennykh pamyati V.V. Rymyantseva (Problems of Analytical Mechanics and Theory of Stability, Collected Papers in Memoriam of V.V. Rumyantsev), Moscow: Fizmatlit, 2009, pp. 176–189.

    Google Scholar 

  29. Tkhai, V.N., On Behavior of the Period of Symmetrical Periodic Motions, Prikl. Mat. Mekh., 2012, vol. 76, no. 4, pp. 616–622.

    MathSciNet  Google Scholar 

  30. Tkhai, V.N., On the Lyapunov–Poincare Method in the Theory of Periodic Motions, Prikl. Mat. Mekh., 1998, vol. 62, no. 3, pp. 355–371.

    MathSciNet  Google Scholar 

  31. Coron, J.M., On the Stabilization of Controllable and Observable Systems by an Output Feedback Law, Math. Control Signal. Syst., 1994, no. 7, pp. 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tkhai, V.N., Stabilizing the Oscillations of an Autonomous System, Autom. Remote Control, 2016, vol. 77, no. 6, pp. 972–980.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tkhai.

Additional information

Original Russian Text © V.N. Tkhai, 2017, published in Avtomatika i Telemekhanika, 2017, No. 4, pp. 21–36.

This paper was recommended for publication by L.B. Rapoport, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkhai, V.N. Model containing coupled subsystems with oscillations of different types. Autom Remote Control 78, 595–607 (2017). https://doi.org/10.1134/S0005117917040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917040026

Keywords

Navigation