Skip to main content
Log in

Essays on the absolute stability theory

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A brief historical background of the development of the absolute stability theory was presented, and some of its methods and approaches, as well as the results obtained using them, were discussed. The kinds of systems under consideration are named, and applications of the methods and results of the absolute stability theory to other scientific and practical fields for solution of the engineering, mechanical, physical, and other problems were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

List of cited literature

  1. Lur’e, A.I. and Postnikov, V.N., On the Theory of Stability of the Controlled Systems, Prikl. Mat. Mekh., 1944, vol. 8, no. 3, pp. 246–248.

    Google Scholar 

Monographs

  1. Lur’e, A.I., Nekotorye nelineinye zadachi teorii avtomaticheskogo regulirovaniya (Some Nonlinear Problems of the Automatic Control Theory), Moscow: Gostekhizdat, 1951.

    Google Scholar 

  2. Pliss, V.A., Nekotorye problemy teorii ustoichivosti duizheniya v tselom (Some Problems of the Theory of Motion Stability in Large), Leningrad: Leningr. Gos. Univ., 1958.

    Google Scholar 

  3. Letov, A.M., Ustoichivost’ nelineinykh reguliruemykh sistem (Stability of the Nonlinear Controlled Systems), Moscow: Fizmatgiz, 1962.

    Google Scholar 

  4. Aizermanm, M.A. and Gantmakher, F.R., Absolyatnaya ustoichivost’ reguliruemykh sistem (Absolute Stability of the Controlled Systems), Moscow: Akad. Nauk SSSR, 1963.

    Google Scholar 

  5. Pliss, V.A., Nelokal’nye problemy teorii kolebanii (Nonlocal Problems of the Oscillation Theory), Moscow: Nauka, 1964.

    Google Scholar 

  6. La Salle, J.P. and Lefschets, S., Stability by Lyapunov’s Direct Method, New York: Academic, 1961. Translated under the title Issledovanie ustoichivosti pryamym metodom Lyapunova, Moscow: Mir, 1964.

    Google Scholar 

  7. Barbashin, E.A., Vvedenie v teoriyu ustoichivosti (Introduction to the Stability Theory), Moscow: Nauka, 1967.

    Google Scholar 

  8. Lefschetz, S., Stability of Nonlinear Control Systems, New York: Academic, 1965. Translated under the title Ustoichivost’ nelineinykh sistem automaticheskogo upravleniya, Moscow: Mir, 1967.

    MATH  Google Scholar 

  9. Barbashin, E.A., Funktsii Lyapunova (Lyapunov Functions), Moscow: Nauka, 1970.

    MATH  Google Scholar 

  10. Popov, V.M., Giperustoichivost’ automaticheskikh sistem (Hyperstability of Automatic Systems), Moscow: Nauka, 1970.

    Google Scholar 

  11. Naumov, B.N., Teoriya nelineinykh avtomaticheskikh sistem (Theory of Nonlinear Automatic Systems), Moscow: Nauka, 1972.

    Google Scholar 

  12. Narendra, K.S. and Taylor, J., Frequency Domain Methods for Absolute Stability, New York: Academic, 1973.

    Google Scholar 

  13. Kuntsevich, V.M. and Lychak, M.M., Sintez avtomaticheskogo upravleniya s pomoshch’yu funktsii Lyapunova (Design of Automatic Control by the Lyapunov Functions), Moscow: Nauka, 1977.

    Google Scholar 

  14. Yakubovich, V.A., Leonov, G.A., and Gelig, A.Kh., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of the Nonlinear Systems with Nonunique Equilibrium State), Moscow: Nauka, 1978.

    Google Scholar 

  15. Shil’man, S.V., Metod proizvodyashchikh funktsii v teorii dinamicheskikh sistem (Method of Generating Functions in the Theory of Dynamic Systems), Moscow: Nauka, 1978.

    Google Scholar 

  16. Voronov, A.A., Ustoichivost’, upravlyaemost’, nablyudaemost’ (Stability, Controllability, Observability), Moscow: Nauka, 1979.

    Google Scholar 

  17. Jury, E.I., Innors and Stability of Dynamic Systems, New York: Wiley, 1974. Translated under the title Innory i ustoichivost’ dinamicheskikh sistem, Moscow: Nauka, 1979.

    Google Scholar 

  18. Rouche, N., Habets, P., and Laloy, M., Stability Theory by Liapunov’s Direct Method, New York: Springer-Verlag, 1977. Translated under the title Pryamoi metod Lyapunova v teorii ustoichivosti, Moscow: Mir, 1980.

    Google Scholar 

  19. Aisagaliev, S.A., Analiz i sintez avtonomnykh nelineinykh sistem avtomaticheskogo upravleniya na osnove vtorogo methoda Lyapunova (Analysis and Design of the Automatic Control Systems by the Second Method of Lyapunov), Alma-Ata: Nauka, 1980.

    Google Scholar 

  20. Gelig, A.Kh., Dinamika impul’snykh sistem i neironnykh setei (Dynamics of Pulse Systems and Neural Networks), Leningrad: Leningr. Gos. Univ., 1982.

    Google Scholar 

  21. Rezvan, V., Absolyutnaya ustoichivost’ avtomaticheskikh sistem s zapazdyvaniem (Absolute Stability of the Automatic Delay Systems), Moscow: Nauka, 1983.

    Google Scholar 

  22. Kosyakin, A.A. and Shmarikov, B.M., Kolebaniya v tsifrovykh avtomaticheskikh sistemakh (Oscillations in Automatic Digital Systems), Moscow: Nauka, 1983.

    Google Scholar 

  23. Gil’, M.I., Operatornye funktsii, differentsial’nye uravneniya i dinamika sistem (Operator Functions, Differential Equations, and System Dynamics), Moscow: Nauka, 1984.

    Google Scholar 

  24. Metod vektornykh funktsii Lyapunova v teorii ustoichivosti (Method of the Lyapunov Vector Functions in the Stability Theory), Voronov, A.A. and Matrosov, V.M., Eds., Moscow: Nauka, 1987.

    Google Scholar 

  25. Korenevskii, D.G., Ustoichivost’ dinamicheskikh sistem pri sluchainykh vozmushcheniyakh parametrov. Algebraicheskie kriterii (Stability of Dynamic Systems under Random Perturbations of Parameters), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  26. Tsikunov, A.M., Kvadratichnyi kriterii absolyutnoi ustoichivosti v teorii adaptivnykh sistem (Quadratic Absolute Stability Criterion in the Theory of Adaptive Systems), Frunze: Ilim, 1990.

    Google Scholar 

  27. Barkin, A.I., Zelentsovskii, A.L., and Pakshin, P.V., Absolyutnaya ustoichivost’ determinirovannykh i stokhasticheskikh sistem upravleniya (Absolute Stability of the Deterministic and Stochastic Control Systems), Moscow: Mosk. Aviats. Inst., 1992.

    Google Scholar 

  28. Gelig, A.Kh. and Churilov, A.N., Ustoichivost’ i kolebaniya nelineinykh impul’snykh sistem (Stability and Oscillations of the Nonlinear Pulse Systems), St. Petersburg: S.-Peterburg. Gos. Univ., 1993.

    Google Scholar 

  29. Pakshin, P.V., Diskretnye sistemy so sluchainymi parametrami i strukturoi (Discrete Systems with Random Parameters and Structure), Moscow: Nauka, 1994.

    Google Scholar 

  30. Leonov, G.A., Burkin, I.M., and Shepelyavyi, A.I., Frequency Methods in Oscillation Theory, Dordrecht: Kluwer, 1995.

    MATH  Google Scholar 

  31. Leonov, G.A., Ponomarenko, D.V., and Smirnova, V.B., Frequency Methods for Nonlinear Analysis. Theory and Applications, Singapore: World Scientific, 1996.

    Google Scholar 

  32. Leonov, G.A. and Smirnova, V.B., Matematicheskie problemy teorii fazovoi sinkhronizatsii (Mathematical Problems of the Phase Synchronization Theory), St. Petersburg: Nauka, 2000.

    Google Scholar 

  33. Pyatnitskii, E.S., Izbrannye trudy. Teoriya upravleniya (Selected Works. Control Theory), Moscow: Fizmatlit, 2004, vol. 1.

    Google Scholar 

  34. Yakubovich, V.A., Leonov, G.A., and Gelig, A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Singapore: World Scientific, 2004.

    MATH  Google Scholar 

  35. Ivanov, V.A., Kupreev, S.A., and Liberzon, M.R., Kosmicheskie trosovye sistemy. Nekotorye aspekty prakticheskogo ispol’zovaniya (Space Cable Systems. Some Aspects of Practical Use), Liberzon, M.R., Ed., Moscow: Ross. Inzh. Akad., 2005.

    Google Scholar 

Manulas and Textbooks

  1. Aizerman, M.A., Teoriya avtomaticheskogo regulirovaniya (Theory of Automatic Control), Moscow: Nauka, 1966.

    Google Scholar 

  2. Roitenberg, Ya.N., Avtomaticheskoe upravlenie (Automatic Control), Moscow: Nauka, 1971.

    Google Scholar 

  3. Zubov, V.N., Lektsii po teorii upravleniya (Lectures on the Control Theory), Moscow: Nauka, 1975.

    MATH  Google Scholar 

  4. Popov, E.P., Teoriya nelineinykh sistem avtomaticheskogo regulirovaniya i upravleniya (Theory of Nonlinear Systems of Automatic Regulation and Control), Moscow: Nauka, 1979.

    Google Scholar 

  5. Voronov, A.A., Osnovy teorii avtomaticheskogo upravleniya. Osobye lineinye i nelineinye sistemy (Fundamentals of the Automatic Control Theory. Special Linear and Nonlinear Systems), Moscow: Energiya, 1981.

    Google Scholar 

  6. Netushil, A.V., Teoriya avtomaticheskogo upravleniya (Theory of Automatic Control), Moscow: Vysshaya Shkola, 1983.

    Google Scholar 

  7. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (Course of the Automatic Control Theory), Moscow: Nauka, 1986.

    Google Scholar 

  8. Spravochnik po teorii avtomaticheskogo upravleniya (Handbook of the Theory of Automatic Control), Krasovskii, A.A., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  9. Vidyasagar, M., Nonlinear Systems Analysis, Englewood Cliffs: Prentice Hall, 1993.

    MATH  Google Scholar 

  10. Leonov, G.A., Mathematical Problems of Control Theory, Singapore: World Scientific, 2001.

    MATH  Google Scholar 

  11. Khalil, H., Nonlinear Systems, Upper Saddle River: Prentice Hall, 2003.

    MATH  Google Scholar 

  12. Aleksandrov, V.V., Boltyanskii, V.G., Lemak, S.S., et al., Optimal’noe upravlenie dvizheniem (Optimal Control of Motion), Moscow: FIZMATLIT, 2005.

    Google Scholar 

Reviews

  1. Gantmakher, F.R. and Yakubovich, V.A., Absolute Stability of the Nonlinear Controlled Systems, in Tr. II Vses. s”ezda po teoreticheskoi i prikladnoi mekhanike (Proc. II All-Union Conf. Theoret. Applied. Mech.), Moscow: Nauka, 1966, pp. 30–63.

    Google Scholar 

  2. Brockett, R.W., The Status of Stability Theory for Deterministic Systems, IEEE Trans. Automat. Control, 1966, vol. AC-11, no. 3, pp. 696–706.

    Google Scholar 

  3. Pyatnitskii, E.S., New Studies on Absolute Stability of Automatic Control Systems, Autom. Telemekh., 1968, no. 6, pp. 5–36.

  4. Levin, A.Yu., Nonoscillation of the Solutions of the Equation x (n) + σ1(t) x (n−1) + ... + σn(t)x + 0, Usp. Mat. Nauk, 1969, vol. 24, no. 2 (146), pp. 43–96.

    MATH  Google Scholar 

  5. Matrosov, V.M., Method of the Lyapunov Vector Functions in Feedback Systems, Avtom. Telemekh., 1972, no. 9, pp. 63–75.

  6. Matrosov, V.M., Method of the Lyapunov Vector Functions in Analysis of Complex Distributed-parameter Systems, Avtom. Telemekh., 1973, no. 1, pp. 5–22.

  7. Yakubovich, V.A., Methods of the Theory of Absolute Stability, in Metody issledovaniya nelineinykh sistem avtomaticheskogo upravleniya (Methods of Studying the Nonlinear Automatic Control Systems), Nelepin, R.A., Ed., Moscow: Nauka, 1975, pp. 74–174.

    Google Scholar 

  8. Yakubovich, V.A., Frequency Methods of Qualitative Study of the Nonlinear Controllable Systems, in VII Int. Konf. über nichtlineare Schwingungen, Berlin: Akademie, 1977, vol. 1, pp. 365–387.

    Google Scholar 

  9. Venkatesh, Y.V., A Survey of some Recent Results in the Stability and Instability Analyses of Time-varying Systems, Int. J. Non-linear Mech., 1977, vol. 12, no. 4, pp. 251–268.

    MATH  MathSciNet  Google Scholar 

  10. Alekseevskaya, N.L. and Gromova, P.S., The Second Lyapunov Method for the Differential Equations with Divergent Argument, in Differents, uravneniya s otklonyayushchimsya argumentom (Differential Equations with Divergent Argument), Kiev: Akad. Nauk USSR, 1977, pp. 19–34.

    Google Scholar 

  11. Zharkov, A.V. and Yakubovich, V.A., Quadratic Criterion for Conditional Absolute Stability and its Use, Dinamika Sistem, 1977, vol. 12, pp. 54–67.

    Google Scholar 

  12. Liberzon, M.R., New Results on Absolute Stability of the Nonstationary Controlled Systems (Review), Avtom. Telemekh., 1979, no. 8, pp. 29–48.

  13. Ferrante, L. and Marchetti, F., Some Results on Total Stability, Boll. Unione Mat. Ital., 1981, vol. A18, no. 3, pp. 111–122.

    MathSciNet  Google Scholar 

  14. Parks, P.S., Stability of Systems—A Survey, Proc. Int. Conf. Contr. Appl., Warwick, 1981, pp. 266–277.

  15. Voronov, A.A., State-of-the-art and Problems of the Stability Theory, Avtom. Telemekh., 1982, no. 5, pp. 5–28.

  16. Likhtarnikov, A.L. and Yakubovich, V.A., Absolute Stability of the Automatic Delay Systems. Supplement to the book of Rezvan Absolyutnaya ustoichivost’ nelineinykh sistem s zapazdyvaniem (Absolute Stability of the Nonlinear Delay Systems), Moscow: Nauka, 1983, pp. 287–355.

    Google Scholar 

  17. Barabanov, N.E., Gelig, A.Kh., Leonov, G.A., et al., The Frequency Theory (Yakubovich-Kalman Lemma) in the Control Theory, Avtom. Telemekh., 1996, no. 10, pp. 3–40.

  18. Liberzon, M.R., Lur’e Problem of Absolute Stability—A historical Essay, Proc IFAC Symposium Nonlinear Control Systems NOLCOS’01, St. Petersburg, 2001, vol. 1, pp. 22–25.

    Google Scholar 

  19. Liberzon, M.R., Absolute Stability of Dynamical Systems (Survey), Proc. IFAC World Congr., Barcelona, 2002, vol. 1, pp. 265–268.

    Google Scholar 

Publications of the Results 1942

  1. Bulgakov, B.V., Self-Oscillations of the Controlled Systems, Dokl. Akad. Nauk SSSR, 1942, vol. 37, no. 9, pp. 283–287.

    MathSciNet  Google Scholar 

1946

  1. Bulgakov, B.V., Some Problems of the Theory of Control with Nonlinear Characteristics, Prikl. Mat. Mekh., 1946, vol. 10, no. 3, pp. 313–332.

    MATH  MathSciNet  Google Scholar 

  2. Bulgakov, B.V., On Accumulation of Perturbations in the Linear Oscillatory Systems with Constant Parameters, Dokl. Akad. Nauk SSSR, 1946, vol. 51, no. 5, pp. 339–342.

    MathSciNet  Google Scholar 

1949

  1. Aizerman, M.A., On a Problem Concerning Stability “in Large” of the Dynamic Systems, Usp. Mat. Nauk, 1949, vol. 4, no. 4, pp. 186–188.

    MathSciNet  Google Scholar 

1950

  1. Bulgakov, B.V. and Kuzovkov, N.T., On Accumulation of Perturbations in the Linear Systems with Variable Parameters, Prikl. Mat. Mekh., 1950, vol. 14, pp. 7–12.

    MATH  MathSciNet  Google Scholar 

  2. Erugin, N.P., Some Issues of Motion Stability and Qualitative Theory of Differential Equations in Large, Prikl. Mat. Mekh., 1950, vol. 14, pp. 459–512.

    MATH  MathSciNet  Google Scholar 

1951

  1. Malkin, I.G., On the Stability Theory of the Controlled Systems, Prikl. Mat. Mekh., 1951, vol. 15, pp. 59–66.

    MATH  MathSciNet  Google Scholar 

1952

  1. Krasovskii, N.N., Theorems of Stability of Motions Obeying a System of Differential Equations, Prikl. Mat. Mekh., 1952, vol. 16, pp. 547–554.

    MATH  MathSciNet  Google Scholar 

1953

  1. Krasovskii, N.N., On Stability of Solutions of the System of Two Differential Equations, Prikl. Mat. Mekh., 1953, vol. 17, pp. 651–672.

    MATH  MathSciNet  Google Scholar 

1957

  1. Kalman, R.E., Physical and Mathematical Mechanisms of Instability in Nonlinear Automatic Control Systems, Trans. ASME, 1957, no. 79, pp. 553–566.

1961

  1. Popov, V.M., On Absolute Stability of Nonlinear Automatic Control Systems, Avtom. Telemekh., 1961, no. 8, pp. 961–979.

1962

  1. Tsypkin, Ya.Z., On Stability in Large of the Nonlinear and Pulse Automatic Systems, Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 10, pp. 52–55.

    MATH  Google Scholar 

  2. Yakubovich, V.A., Solution of some Matrix Inequalities Encountered in the Automatic Control Theory, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no. 6, pp. 1304–1307.

    MATH  MathSciNet  Google Scholar 

1963

  1. Yakubovich, V.A., Frequency Conditions for Absolute Stability of the Controlled Systems with Hysteresis Nonlinearities, Dokl. Akad. Nauk SSSR, 1963, vol. 149, no. 2, pp. 288–291.

    MATH  MathSciNet  Google Scholar 

  2. Yakubovich, V.A., Absolute Stability of the Nonlinear Systems of Automatic Control in the Critical Cases. I, II, Avtom. Telemekh., 1963, vol. 24, no. 3, pp. 293–302; no. 6, pp. 717–731.

    MATH  MathSciNet  Google Scholar 

  3. Kalman, R.E., Lyapunov Functions for the Problem of Lur’e in Automatic Control, Proc. USA National Acad. Sci., 1963, vol. 49, no. 1, pp. 201–205.

    MATH  MathSciNet  Google Scholar 

1964

  1. Yakubovich, V.A., Solution of some Matrix Inequalities Encountered in the Nonlinear Control Theory, Dokl. Akad. Nauk SSSR, 1964, vol. 156, no. 2, pp. 278–281.

    MATH  MathSciNet  Google Scholar 

  2. Yakubovich, V.A., Absolute Stability of the Nonlinear Systems of Automatic Control in the Critical Cases. III, Avtom. Telemekh., 1964, vol. 25, no. 5, pp. 601–612.

    MATH  Google Scholar 

  3. Yakubovich, V.A., Method of Matrix Inequalities in the Theory of Stability of the Nonlinear Controllable Systems. I. Absolute Stability of Forced Oscillations, Avtom. Telemekh., 1964, vol. 25, no. 7, pp. 1017–1029.

    MATH  MathSciNet  Google Scholar 

  4. Brockett, R.W. and Forys, L.J., On the Stability of Systems Containing a Time-varying Gain, Proc. II Ann. Allerton Conf. Circuit Syst. Theory, Urbana, 1964, vol. 3, pp. 413–430.

    Google Scholar 

1965

  1. Yakubovich, V.A., Frequency Conditions for Absolute Stability and Dissipativeness of the Controllable Systems with One Differentiable Nonlinearity, Dokl. Akad. Nauk SSSR, 1965, vol. 160, no. 2, pp. 298–301.

    MATH  MathSciNet  Google Scholar 

  2. Yakubovich, V.A., Method of Matrix Inequalities in the Theory of Stability of the Nonlinear Controllable Systems. II, III, Avtom. Telemekh., 1965, vol. 26, no. 4, pp. 577–599; no. 5, pp. 763–768.

    MATH  MathSciNet  Google Scholar 

1966

  1. Fitts, R.E., Two Counterexamples to Aizerman’s Conjecture, IEEE Trans. Automat. Control, 1966, vol. AC-11, pp. 553–556.

    Google Scholar 

1967

  1. Yakubovich, V.A., Frequency Conditions for Absolute Stability of the Control Systems with Multiple Nonlinear or Linear Nonstationary Units, Avtom. Telemekh., 1967, vol. 23, no. 6, pp. 5–30.

    Google Scholar 

  2. Yakubovich, V.A., Absolute Stability of the Pulse Systems with Multiple Nonlinear or Linear Nonstationary Units. I, Avtom. Telemekh., 1967, no. 9, pp. 59–72.

  3. Yakubovich, V.A., Frequency Conditions for Stability of Nonlinear Integral Equations of Automatic Control, Vestn. Leningr. Gos. Univ., 1967, vol. 7, no. 2, pp. 103–125.

    Google Scholar 

  4. Brockett, R.W. and Lee, H.B., Frequency-domain Instability Criteria for Time-varying and Nonlinear Systems, Proc. IEEE, 1967, vol. 55, no. 5, pp. 604–619.

    Google Scholar 

1968

  1. Yakubovich, V.A., Absolute Stability of the Pulse Systems with Multiple Nonlinear or Linear Nonstationary Units. II, Avtom. Telemekh., 1968, no. 2, pp. 81–101.

  2. Yakubovich, V.A., On the Pulse Control Systems with Width Modulation, Dokl. Akad. Nauk SSSR, 1968, vol. 180, no. 2, pp. 283–294.

    Google Scholar 

  3. Willems, J.L. and Willems, J.C., Stability Analysis of Nonlinear Control Systems in the Frequency Domain, Messen Steuern Regeln, 1968, vol. 11, no. 3, pp. 114–116.

    Google Scholar 

1969

  1. Yakubovich, V.A., On a Class of Nonlinear Differential Equations for which the Questions of Stability in Large and Instability Can be Solved Effectively, Dokl. Akad. Nauk SSSR, 1969, vol. 186, no. 5, pp. 1027–1030.

    MATH  MathSciNet  Google Scholar 

1970

  1. Leonov, G.A., On Necessity of the Frequency Condition for Absolute Stability of the Stationary Systems in the Critical Case of a Pair of Purely Imaginary Roots, Dokl. Akad. Nauk SSSR, 1970, vol. 193, no. 4, pp. 756–759.

    MATH  MathSciNet  Google Scholar 

  2. Pyatnitskii, E.S., Absolute Stability of the Nonstationary Nonlinear Systems, Avtom. Telemekh., 1970, no. 1, pp. 5–15.

  3. Pyatnitskii, E.S., Absolute Stability of the Nonstationary Nonlinear Systems. Free and Forced Motions, Avtom. Telemekh., 1970, no. 3, pp. 5–15.

  4. Pyatnitskii, E.S., Absolute Stability of the Nonlinear Pulse Systems with Nonstationary Nonlinearity, Avtom. Telemekh., 1970, no. 8, pp. 50–58.

  5. Yakubovich, V.A., Solution of one Algebraic Problem Encountered in the Control Theory, Dokl. Akad. Nauk SSSR, 1970, vol. 193, no. 1, pp. 57–60.

    MATH  MathSciNet  Google Scholar 

  6. Yakubovich, V.A., Absolute Instability of Nonlinear Control Systems. I, Avtom. Telemekh., 1970, no. 12, pp. 5–14.

  7. Willems, J.L. and Willems, J.C., The Application of Lyapunov Methods to the Computation of Transient Stability Regions for Multimachine Power Systems, IEEE Trans. Power Apparatus Syst., 1970, vol. PAS-89, no. 5–6, pp. 795–801.

    Google Scholar 

1971

  1. Yakubovich, V.A., S-procedure in the Nonlinear Control Theory, Vestn. Leningr. Gos. Univ., ser. 1, 1971, no. 1, pp. 62–77.

  2. Yakubovich, V.A., Absolute Instability of the Nonlinear Control Systems. II. Systems with Nonstationary Nonlinearities. Circular criterion, Avtom. Telemekh., 1971, no. 6, pp. 25–33.

  3. Willems, J.C. and Blankenship, G.L., Frequency Domain Stability Criteria for Stochastic Systems, IEEE Trans. Automat. Control, 1971, vol. AC-16, no. 4, pp. 292–299.

    MathSciNet  Google Scholar 

1973

  1. Zhermolenko, V.N., Absolute Stability of One Class of Third-order Systems, in Nauchn. tr. aspir. mekhmata Mosk Gos. Univ. (Collected Papers of the Postgraduates of the Department of Mathematics and Mechanics of the Moscow State Univ.), Moscow: Mosk. Gos. Univ., 1973, pp. 160–167.

    Google Scholar 

  2. Pyatnitskii, E.S., On Uniform Stability under Parametric Perturbations, Diff. Uravn., 1973, vol. 9, no. 7, pp. 1262–1273.

    MATH  Google Scholar 

  3. Yakubovich, V.A., Frequency Theorem in the Control Theory, Sib. Mat. Zh., 1973, vol. 14, no. 2, pp. 384–420.

    MATH  Google Scholar 

  4. Yakubovich, V.A. and Fradkov, A.L., Necessary and Sufficient Conditions for Absolute Stability in the Classes of Systems with Two Integral Quadratic Constraints, Dokl. Akad. Nauk SSSR, 1973, vol. 213, no. 4, pp. 798–901.

    MATH  MathSciNet  Google Scholar 

1974

  1. Willems, J.C. and Brockett, R.W., Average Value Symmetry Criteria for Symmetric Systems, Ricerche Automatica, 1974, vol. 4, no. 2–3, pp. 87–108.

    Google Scholar 

1975

  1. Aleksandrov, V.V. and Zhermolenko, V.N., A Criterion for Absolute Stability of the Third-order Systems, Dokl. Akad. Nauk SSSR, 1975, vol. 222, no. 2, pp. 309–311.

    MATH  MathSciNet  Google Scholar 

  2. Aleksandrov, V.V. and Zhermolenko, V.N., Absolute Stability of the Third-order Systems with a Nonlinear Nonstationary Element, in Nauchn. tr. NII MEKH MGU (Proc. NII MEKH MGU), 1975, no. 40, pp. 48–64.

  3. Leonov, G.A., Stability and Oscillations in the Phase Systems, Sib. Mat. Zh., 1975, vol. 16, no. 5, pp. 1031–1052.

    MATH  MathSciNet  Google Scholar 

1976

  1. Bendrikov, G.A. and Sidorova, G.A., Using the Method of Root Trajectories to Study the Nonlinear Systems for Absolute Stability by the V.M. Popov Criterion, Vestn. Mosk. Gos. Univ., 1976, no. 2, pp. 177–186.

  2. Leonov, G.A., On a Class of Dynamic Systems with Cylindrical Phase Space, Sib. Mat. Zh., 1976, vol. 17, no. 1, pp. 91–112.

    MATH  MathSciNet  Google Scholar 

  3. Skachkov, B.N., Development of the Lyapunov Function for the Self-control Systems, Diff. Uravn., 1976, vol. 12, no. 8, pp. 1452–1461.

    Google Scholar 

  4. Cartianu, Gh. and Pilat, F.L., Extension of Applicability of Popov’s Steady-state Absolute-stability Frequency Criterion of Nonlinear Systems, Probl. Automatizare, 1976, vol. 9, pp. 97–105.

    Google Scholar 

  5. Datta, K.B., On the Stability of Discrete Multivariable Lur’e Problem, J. Inst. Electronics & Telecommun. Eng., 1976, vol. 22, no. 1, pp. 15–17.

    MATH  Google Scholar 

  6. Datta, K.B., Absolute Stability of Pulse-width Modulated Feedback Systems Containing an Integrator, J. Inst. of Electronics & Telecommun. Eng., 1976, vol. 22, no. 9, pp. 591–594.

    Google Scholar 

1977

  1. Voronov, A.A., Systems with Differentiable Nondecreasing Nonlinearity that are Absolutely Stable in the Hurwitzian Angle, Dokl. Akad. Nauk SSSR, 1977, vol. 234, no. 1, pp. 38–41.

    MATH  MathSciNet  Google Scholar 

  2. Gromova, P.S. and Pelevina, A.F., Absolute Stability of the Automatic Control Delay Systems, Diff. Uravn., 1977, vol. 13, no. 8, pp. 1375–1383.

    MATH  MathSciNet  Google Scholar 

  3. Zhermolenko, V.N. and Lokshin, B.Ya., On Stability of Nonstationary Motion of the Axially Symmetric Flight Vehicle, Mekh. Tverd. Tela, 1977, no. 5, pp. 32–39.

  4. Koryakin, Yu.A. and Leonov, G.A., Frequency Conditions for Stability in Large of the Multivariable Phase Systems, in Problemy teorii periodicheskikh dvizhenii (Problems of the Theory of Periodic Motions), Izhevsk, 1977, pp. 61–64.

  5. Krasnosel’skii, M.A. and Pokrovskii, A.V., Principle of no Bounded Solutions in the Problem of Absolute Stability, Dokl. Akad. Nauk SSSR, 1977, vol. 233, no. 3, pp. 293–296.

    MathSciNet  Google Scholar 

  6. Leonov, G.A., Reduction Theorem for the Nonstationary Nonlinearities, Vestn. Leningr. Gos. Univ., 1977, no. 7, pp. 38–42.

  7. Leonov, G.A. and Churilov, A.N., On Stability in Large of the Phase Delay Systems, in Problemy teorii periodicheskikh dvizhenii (Problems of the Theory of Periodic Motions), Izhevsk, 1977, pp. 65–66.

  8. Leonov, G.A. and Chshieva, T.L., On Stability of a Class of Phase Systems with Two Nonlinearities, Izv. Akad. Nauk Kaz. SSR, Fiz. Mat., 1977, no. 3, pp. 76–78.

  9. Shil’man, S.V., Algebraic Criterion for Absolute Stability of the Nonlinear Discrete Systems, Avtom. Telemekh., 1977, vol. 38, no. 12, pp. 48–55.

    MathSciNet  Google Scholar 

  10. Alexandrov, V.V., Carton, R.H., and Betancourt, M.M., Estabilidad absoluta de los sistemas lineales de secondo orden con coeficientes variables, Investic Oper., 1977, no. 20, pp. 21–37.

  11. Bickart, T.A. and Jury, E.I., Regions of Polynomial Root Clustering, J. Franklin Inst., 1977, vol. 304, no. 4/5, pp. 149–160.

    MATH  Google Scholar 

  12. Jumarie, G., Stochastic Hyperstability for a Broad Class of Distributed Systems with Space Dependent Coefficients, Ricerche Automatica, 1988, vol. 8, no. 2–3, pp. 163–92.

    Google Scholar 

1978

  1. Alekseev, A.S. and Chubarov, M.A., On Numerical-and-Analytical Construction of the Absolute Stability Domains, Diff. Integr. Uravn., 1978, no. 2, pp. 101–108.

  2. Akhmerov, R.R., Kazakova, N.G., and Pokrovskii, A.V., Principle of no Constrained Solutions and Absolute Stability of the Neutral-type Equations, Serdika B”m. Mat. Spis., 1978, vol. 4, no. 1, pp. 61–69.

    MATH  MathSciNet  Google Scholar 

  3. Blyagoz, Z.U. and Leonov, G.A., Frequency Criterion for Stability in Large of the Nonlinear Systems, Vestn. Leningr. Gos. Univ., 1978, no. 13, pp. 18–23.

  4. Brusin, V.A., Design of a Searchless Self-adjusting System by the Method of the Absolute Stability Theory, Avtom. Telemekh., 1978, no. 39, pp. 61–67.

  5. Voronov, A.A., Absolutely Stable Systems with Differentiable Nondecreasing Nonlinearity, Avtom. Telemekh., 1978, no. 7, pp. 12–18.

  6. Kalitin, B.S. and Cherchun, M.Ya., On the Aizerman Problem for the Second-order Systems, Vestn. Byelorus. Univ., 1978, p. 17.

  7. Krasnosel’skii, M.A. and Pokrovskii, A.V., On Absolute Stability of the Discrete-time Systems, Avtom. Telemekh., 1978, no. 2, pp. 42–45.

  8. Lipatov, A.V., Extension of the Circular Criterion for Absolute Stability for a Class of Linear Continuous Nonstationary Systems, Moscow: Mosk. Aviats. Inst., 1978, no. 434, pp. 65–69.

    Google Scholar 

  9. Maigarin, B.Zh. and Kasimov, E.K., Absolute Instability of the Nonlinear Control Systems, Izv. Akad. Nauk Kaz. SSR, Fiz. Mat., 1978, no. 3, pp. 42–48.

  10. Meilakhs, A.M., On Design of Stable Automatic Control Systems under Parametric Perturbations, Avtom. Telemekh., 1978, no. 10, pp. 5–16.

  11. Borne, P. and Gentina, J.C., Absolute Stability for Nonlinear, Nonstationary Large Scale Systems, Proc. 1978 Joint Automatic Control Conf. ISA, 1978, part III, vol. 3–4, pp. 3/317–3/326.

    Google Scholar 

  12. Grujic, L.T., Solutions for the Lurie-Postnikov and Aizerman Problems, Int. J. Syst. Sci., 1978, vol. 9, no. 12, pp. 1359–1372.

    MATH  MathSciNet  Google Scholar 

  13. Mitra, D., The Absolute Stability of High-order Discrete-time Systems Utilizing the Saturation Nonlinearity, IEEE Trans. Circuits & Syst., 1978, vol. CAS-25, no. 6, pp. 365–371.

    Google Scholar 

  14. Singh, V. and Kumar, A., Verification of Aizerman’s Conjecture for a Class of Non-linear Systems, J. Inst. of Eng. (India) Electronics & Telecommun. Eng. Division, 1976, vol. 59, no. ET-1, pp. 23, 24.

    Google Scholar 

  15. Vidyasagar, M., Some General Necessary and Sufficient Conditions for the Absolute Stability of Nonlinear Feedback Systems, Proc. 1978 IEEE Int. Symp. Circuits Syst., 1978, pp. 620–625.

1979

  1. Abdullaev, A.A. and Dzhafarov, E.M., Frequency Criterion for Stability of Delay SPS, Avtom. Telemekh., 1979, no. 6, pp. 198–205.

  2. Barabanov, N.E., Stability and Instability of the Stationary Sets of Nonlinear Control Systems with Constrained Derivative, Vestn. Leningr. Gos. Univ., 1979, no. 13, pp. 115, 116.

  3. Barabanov, N.E., Absolute Stability of the Control Systems with Monotonic Nonlinearities, Vestn. Leningr. Gos. Univ., Mat. Mekh. Astron., 1979, no. 11.

  4. Barabanov, N.E. and Yakubovich, V.A., Absolute Stability of the Control Systems with One Hysteresis Nonlinearity, Avtom. Telemekh., 1979, no. 12, pp. 5–11.

  5. Gromova, P.S. and Lisana, P.M., Method of the Lyapunov Vector Functions for the Delay Systems, Differents. Uravneniya s Otklonyayushchimsya Argumentom, 1979, no. 11, pp. 14–22.

  6. Leonov, G.A., Abramovich, S.M., Burkina, L.I., et al., Reduction Method in the Theory of Dynamic Systems with Cylindrical Phase Space and its Application to the Studies of Stability of the Electric Power System, in Teoriya ustoichivosti i ee prilozheniya (Stability Theory and its Applications), Novosibirsk: Nauka, 1979, pp. 55–60.

    Google Scholar 

  7. Liberzon, M.R., Absolute Stability of a Class of Control led Systems, Vestn. Mosk. Gos. Univ., Mat. Mech., 1979, no. 3, pp. 74–80.

  8. Liberzon, M.R., Absolute Stability of a Class of Tracking Systems, Avtom. Telemekh., 1979, no. 12, pp. 25–29.

  9. Molchanov, A.P., Absolute Stability of the Pulse Systems with Several Nonstationary Nonlinear Elements, Avtom. Telemekh., 1979, no. 3, pp. 43–51.

  10. Osipov, L.A., Kochetov, S.A., and Konovalov, A.S., Automatic Determination of the Domain of Absolute Stability of the Control Systems with Two Nonlinear Elements, Izv. Vuzov, Prib., 1979, vol. 22, no. 11, pp. 23–28.

    Google Scholar 

  11. Rimskii, G.V., Root Method of Constructing the Domains of Absolute Stability of the Nonlinear Systems, Izv. Vuzov, Elektromekh., 1979, no. 6, pp. 499–503.

  12. Chubarov, M.A., On Criteria of Polynomial Nonnegativeness and Determination of the Absolute Stability Domains, Diff. Integr. Uravn., 1979, pp. 149–157.

  13. Grujic, L.T., Borne, P., and Gentina, J.C., Matrix Approaches to the Absolute Stability of Time-varying Lurie-Postnikov Systems, Int. J. Control, 1979, vol. 30, no. 6, pp. 967–980.

    MATH  MathSciNet  Google Scholar 

  14. Kaszkurewicz, E. and Hsu, L., Stability of Nonlinear Systems: A Structural Approach, Automatica, 1979, vol. 15, no. 5, pp. 609–614.

    MATH  MathSciNet  Google Scholar 

  15. Rasvan, V., Absolute Stability of Nonlinear Difference Systems, Revue Romaine des Sciences Techniques, 1979, vol. 24, no. 3, pp. 495–500.

    MathSciNet  Google Scholar 

  16. Zhermolenko, V.N. and Hing Corton, R., Etabilidad absoluta de los sistemas de control automatico de seguno orden con coeficientes variables, Investigation Oper., 1979, no. 28, pp. 39–54.

1980

  1. Grujic, L.T., Necessary and Sufficient Lyapunov Conditions for Absolute Stability and the Aizerman Hypothesis, Mat. Fiz., 1980, no. 28, pp. 7–19.

  2. Kiguradze, I.T. and Rozov, N.Kh., On Absolute Stability of Nonlinear Nonstationary Automatic Control Systems, Diff. Uravn., 1980, vol. 16, no. 4, pp. 755–756.

    MATH  Google Scholar 

  3. Leonov, G.A., On an Extension of the V.M. Popov Frequency Criterion for Nonstationary Nonlinearities, Avtom. Telemekh., 1980, no. 11, pp. 21–26.

  4. Leonov, G.A. and Smirnova, V.B., Reduction Method for Integro-differential Equations, Sib. Mat. Zh., 1980, no. 4, pp. 112–124.

  5. Liberzon, M.R., On Absolute Stability of Third-order Systems with Two Nonlinear Elements, Vestn. Mosk. Gos. Univ., Mat. Mekh., 1980, no. 3, pp. 88–92.

  6. Lychak, M.M., A New Approach to Studying Stability of the Nonlinear Dynamic Systems, Avtomatika, 1980, vol. 13, no. 1, pp. 38–45.

    MathSciNet  Google Scholar 

  7. Meilakhs, A.M., On Stabilization of the Linear Controllable Systems under Constant Acting Perturbations, Avtom. Telemekh., 1980, no. 11, pp. 27–32.

  8. Meilakhs, A.M., On Existence of the Lyapunov Functions for the Parametrically Perturbed Linear Systems, in Slozhnye sistemy upravleniya (Complex Control Systems), Kiev: Inst. Cybern., 1980, pp. 11–15.

    Google Scholar 

  9. Onaibaev, K., Relation between Two Aizerman Problems, in Matem. modelir. i optim. upravl. (Mathematical Modeling and Optimal Control), Alma-Ata: Kazan. Gos. Univ., 1980, pp. 152–155.

    Google Scholar 

  10. Grujic, L.T. and Porter, B., Discrete-time Tracking Systems Incorporating Lur’e Plants with Multiple Nonlinearities, Int. J. Syst. Sci., 1980, vol. 11, no. 12, pp. 1505–1520.

    MATH  MathSciNet  Google Scholar 

1981

  1. Aizikovich, A.A., Nonoscillation Criteria for the Solutions of the Difference Equation, Diff. Uravn., 1981, vol. 17, no. 12, pp. 2201–2211.

    MathSciNet  Google Scholar 

  2. Gil’, M.I., On Stability of the Nonstationary Systems with Distributed Parameters, Avtom. Telemekh., 1981, no. 1, pp. 5–8.

  3. Krasnosel’skii, M.A. and Pokrovskii, A.V., Principle of Lack of Bounded Solutions in the Problem of Absolute Stability, in Ustoichivost’ dvizheniya. Analit. mekh. Upravlenie dvizheniem (Motion Stability, Analytical Mechanics, Control of Motion), Moscow, 1981, pp. 156–169.

  4. Leonov, G.A., The Necessary Frequency Conditions for Absolute Stability of the Nonstationary Systems, Avtom. Telemekh., 1981, no. 1, pp. 15–19.

  5. Leonov, G.A., On Stability in Large of the Nonlinear Systems in the Critical Case of Two Zero Roots, Prikl. Mat. Mekh., 1981, vol. 45, no. 4, pp. 752–755.

    MATH  MathSciNet  Google Scholar 

  6. Likhtarnikov, A.L., Necessary and Sufficient Conditions for Absolute Stability of the Nonlinear Distributed Systems in Linear Output, in Chislennye metody v gidromekhanike (Numerical Methods in Fluid Mechanics), Leningrad: LISI, 1981, pp. 71–76.

    Google Scholar 

  7. Molchanov, A.P. and Pyatnitskii, E.S., Absolute Instability of the Nonlinear Nonstationary Systems. I, Avtom. Telemekh., 1981, no. 1, pp. 19–27.

  8. Opoitsev, V.I., Unbounded Domains of Asymptotic Stability, Avtom. Telemekh., 1981, no. 3, pp. 5–13.

  9. Skorodinskii, V.I., Absolute Stability and Absolute Instability of the Control Systems with Two Nonlinear Nonstationary Elements. I, Avtom. Telemekh., 1981, no. 9, pp. 21–29.

  10. Datta, K.B. and Chaki, S.R., Absolute Stability of Thyristor Controlled Constant Field Separately Excited DC Motor under Mark-space Control, J. Technology, 1981, vol. 26, no. 1, pp. 41–53.

    Google Scholar 

  11. Grujic, L.T., On Absolute Stability and the Aizerman Conjecture, Automatica, 1981, vol. 17, no. 2, pp. 335–349.

    MATH  MathSciNet  Google Scholar 

1982

  1. Barabanov, N.E., Existence of Periodic Solutions of the Nonlinear Controlled Systems and Kalman’s Hypothesis, Usp. Mat. Nauk, 1982, vol. 37, no. 1.

  2. Barabanov, N.E., Stability, Instability and Dichotomy of the Control Systems with Gradient Nonlinearities, Avtom. Telemekh., 1982, no. 4, pp. 5–8.

  3. Barkin, A.I. and Zelentsovskii, A.L., Method of Nonlinear Transformation of Coordinates for Studying Absolute Stability of the Control Systems, in Dinamika neodnorodnykh sistem, materialy seminara (Dynamics of Nonuniform Systems. Materials of Seminar), Moscow: VNIISI, 1982, pp. 41–50.

    Google Scholar 

  4. Maigarin, B.Zh., Study of Nonlinear Automatic Systems for Control of Course of Ships and Aircraft, Izv. Akad. Nauk Kaz. SSR, Fiz. Mat., 1982, no. 3, pp. 25–30.

  5. Molchanov, A.P. and Pyatnitskii, E.S., Absolute Instability of the Nonlinear Nonstationary Control Systems. I, II, III, Avtom. Telemekh., 1982, no. 1, pp. 19–27; no. 2, pp. 17–28; no. 3, pp. 29–41.

  6. Rozov, N.Kh., Study of Absolute Stability of the Automatic Control Systems, in: Differents, uravneniya i prilozheniya. Tr. 2-i konf. (Differential Equations and Applications. Proc. 2nd Conf.), Russe, 1982, part 2, pp. 622–627.

  7. Skorodinskii, V.I., Absolute Stability and Absolute Instability of the Control Systems with Two Nonlinear Nonstationary Elements, Avtom. Telemekh., 1982, no. 6, pp. 87–94.

  8. Molchanov, A.P. and Pyatnitsky, E.S., A Variational Method for Investigating Absolute Stability and Absolute Instability of Nonlinear Control Systems, Proc. 8th Triennial World IFAC Congress, Kyoto, 1982, vol. 1, pp. 129–136.

    MATH  Google Scholar 

  9. Pyatnitsky, E.S. and Skorodinsky, V.I., Numerical Methods of Lyapunov Function Construction and Their Application to the Absolute Stability Problem, Syst. Control Lett., 1982, vol. 2, no. 2, pp. 130–135.

    Google Scholar 

1983

  1. Gil’, M.I., On a Class of Absolute Stable Systems, Avtom. Telemekh., 1983, no. 10, pp. 70–76.

  2. Gil’, M.I., On a Class of Systems that are Absolutely Stable in the Hurwitzian Angle, Dokl. Akad. Nauk SSSR, 1983, vol. 269, no. 6, pp. 1324–1327.

    MathSciNet  Google Scholar 

  3. Zarubin, A.G., Krasnosel’skii, M.A., and Pokrovskii, A.V., On the Principle of Absence of Bounded Modes in the Problem of Absolute Stability of Distributed-parameter Systems, Avtom. Telemekh., 1983, no. 3, pp. 13–19.

  4. Kamenetskii, V.A., Absolute Stability and Absolute Instability of the Control Systems with Several Nonlinear Nonstationary Elements, Avtom. Telemekh., 1983, no. 12, pp. 20–30.

  5. Kamenetskii, V.A. and Pyatnitskii, E.S., Iterative Method of Construction of the Lyapunov Functions and its Numerical Computer-aided Realization, in EVM v problemakh upravleniya. Sb. tr. (Computers in Control Problems, Collected Papers), Moscow: Inst. Probl. Upravlen., 1983, pp. 61–74.

    Google Scholar 

  6. Leonov, G.A., On Boundedness of the Solutions of Nonautonomous Differential Equations, Vestn. Leningr. Gos. Univ., 1983, no. 7, pp. 21–26.

  7. Likhtarnikov, A.L., Dichotomy and Absolute Instability in the Nonlinear Distributed-parameter Systems, in Chislennye metody v zadachakh matem. fiziki (Numerical Methods in the Problems of Mathematical Physics), Leningrad: LISI, 1983, pp. 22–29.

    Google Scholar 

  8. Likhtarnikov, A.L. and Yakubovich, V.A., Abstract Criteria for Absolute Stability of the Nonlinear Systems in Linear Output and Their Use, Sib. Mat. Zh., 1983, vol. 24, no. 5, pp. 129–148.

    MathSciNet  Google Scholar 

  9. Meilakhs, A.M., On Control of Rotational Motion of Solid Body, Diff. Uravn., 1983, vol. 19, no. 11, pp. 1860–1866.

    MATH  MathSciNet  Google Scholar 

  10. Molchanov, A.P., Criterion for Absolute Stability of the Pulse Systems with Nonstationary Nonlinearity, Avtom. Telemekh., 1983, no. 6, pp. 42–45.

  11. Pyatnitskii, E.S. and Skorodinskii, V.I., Numerical Methods of Constructing the Lyapunov Functions and a Criterion for Absolute Stability in the Form of Numerical Procedure, Autom. Telemekh., 1983, no. 11, pp. 52–63.

  12. Yakubovich, V.A., Graphic Criteria for Absolute Stability and Instability of the Nonlinear Control Systems, Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 2, pp. 307–310.

    MathSciNet  Google Scholar 

  13. Yakubovich, V.A., Absolute Stability of the Nonlinear Distributed-parameter Systems, Avtom. Telemekh., 1983, no. 6, pp. 53–61.

  14. Yakubovich, V.A., Abstract Theory of Absolute Stability and its Application, Kibern. Vychisl. Tekh., 1983, pp. 3–8.

  15. Barkin, A.I. and Zelentsovsky, A.L., A New Criterion for Absolute Stability: Nonlinear Transformation Technique, Int. J. Syst. Sci., 1983, vol. 14, no. 10, pp. 1217–1228.

    MATH  MathSciNet  Google Scholar 

1984

  1. Barkin, A.I., On Relation between Two Criteria for Absolute Stability, Avtom. Telemekh., 1984, no. 1, pp. 36–41.

  2. Barkin, A.I. and Zelentsovskii, A.L., Absolute Stability of the Automatic Control Systems with Single Nonlinearity, Dokl. Akad. Nauk SSSR, 1984, vol. 276, no. 4–6, pp. 809–812.

    MathSciNet  Google Scholar 

  3. Leonov, G.A., Method of Nonlocal Reduction in the Theory of Absolute Stability of Nonlinear Systems, Avtom. Telemekh., 1984, no. 3, pp. 48–56.

  4. Leonov, G.A., On One Hypothesis of A.A. Voronov, Avtom. Telemekh., 1984, no. 5, pp. 17–20.

  5. Lipatov, A.V., Stability of the Discrete Stationary System with One Nonlinear Unit, Avtom. Telemekh., 1984, no. 9, pp. 74–83.

  6. Rozov, N.Kh., Three Problems in the Ordinary Differential Equations, Usp. Mat. Nauk, 1984, vol. 39, no. 4, pp. 145, 146.

    Google Scholar 

  7. Skorodinskii, V.I., Absolute Stability of Nonstationary Motion of the Axially Symmetric Rotating Flight Vehicle, Mekh. Tverd. Tela, 1984, no. 3, pp. 17–21.

  8. Speranskaya, L.S., Necessary Frequency Conditions for Absolute Stability of Systems in the Critical Case of a Pair of Purely Imaginary and One Zero Root, in Matematicheskaya fizika (Mathematical Physics), Leningrad: Leningr. Gos. Pedag. Univ., 1984, pp. 46–55.

    Google Scholar 

  9. Kaszkurewicz, E. and Hsu, L., A Note on the Absolute Stability of Non-linear Discrete-time Systems, Int. J. Control, 1984, vol. 40, no. 4, pp. 867–869.

    MATH  MathSciNet  Google Scholar 

  10. Resende, P. and Kaszkurewicz, E., A New State-space Block-tridiagonal Realization Algorithm for Matrix Transfer Functions and its Use in Absolute Stability Problems, in Proc. 23rd IEEE Conf. Decision Control, 1984, vol. 1, pp. 106–110.

    Google Scholar 

1985

  1. Aleksandrov, V.V. and Morozova, O.I., On the Necessary and Sufficient Conditions for Absolute Stability of the Second-order Systems, Avtom. Telemeekh., 1985, no. 8, pp. 161–164.

  2. Andrusevich, V.V., On a Class of Absolutely Stable Nonlinear Nonstationary Systems, Avtom. Telemekh., 1985, no. 11, pp. 26–33.

  3. Gil’, M.I., On a Class of Absolutely Stable Multivariable Systems, Dokl. Akad. Nauk SSSR, 1985, vol. 280, no. 4, pp. 811–815.

    MathSciNet  Google Scholar 

  4. Gil’, M.I., On a Class of Absolutely Stable Distributed-parameter Systems, Avtom. Telemekh., 1985, no. 12, pp. 54–59.

  5. Kamenetskii, V.A., Absolute Stability of the Discrete Control Systems with Nonstationary Nonlinearities, Avtom. Telemekh., 1985, no. 8, pp. 172–176.

  6. Leonov, G.A., On a Method of Constructing the Lyapunov Functions, in Ustoichivost’ dvizheniya (Stability of Motion), Novosibirsk: Nauka, 1985, pp. 67–71.

    Google Scholar 

  7. Molchanov, A.P. and Pyatnitskii, E.S., Construction of the Lyapunov Functions Defining the Necessary and Sufficient Conditions for Absolute Stability in the Class of Nonstationary Nonlinearities, in Ustoichivost’ dvizheniya (Stability of Motion), Novosibirsk: Nauka, 1985, pp. 82–88.

    Google Scholar 

  8. Yakubovich, V.A., Absolute Stability in the Given Output of the Nonlinear Systems with Partial Derivatives, in Ustoichivost’ dvizheniya (Motion Stability), Novosibirsk: Nauka, 1985, pp. 22–25.

    Google Scholar 

  9. Yakubovich, V.A., Singular Problem of Optimal Control of the Linear Stationary System with Quadratic Functional, Sib. Mat. Zh., 1985, vol. 26, no. 1, pp. 189–200.

    MATH  MathSciNet  Google Scholar 

  10. Feng Chubo, Passivity Analysis of Feedback Systems and its Applications, Zidonghua Xuebao/Acta Automatica Sinica, 1985, vol. 11, no. 2, pp. 111–117.

    MATH  Google Scholar 

  11. Grujic, L.T., Bucevac, Z., and Ribar, Z., On Necessary and Sufficient Conditions for Absolute Stability of Discrete-time Systems, in Proc. Ninth Triennial World Congr. of IFAC, 1985, vol. 1, pp. 201–205.

    Google Scholar 

  12. Qidi Wu and Djordjevic, M., An Application of Polynomial Positivity to the Absolute Stability Analysis of Nonlinear Systems, Scientia Electrica, 1985, vol. 31, no. 4, pp. 140–152.

    Google Scholar 

1986

  1. Zhuikova, A.G. and Khusainov, D.Ya., Numerical Algorithm to Construct the Optimal Lyapunov Function in the Problems of Absolute Stability, Vest. Kiev. Univ., 1986, no. 5, pp. 73–76.

  2. Zelentsovskii, A.L., Construction of the Lyapunov Functions from the Class of Second-degree Forms for Studying Absolute Stability of the Control Systems with Nonstationary Nonlinear Elements, Avtom. Telemekh., 1986, no. 5, pp. 166–169.

  3. Liberzon, M.R., An Attribute of Absolute Stability of the Nonstationary Systems, Avtom. Telemekh., 1986, no. 2, pp. 39–46.

  4. Molchanov, A.P. and Pyatnitskii, E.S., Lyapunov Functions Defining the Necessary and Sufficient Conditions for Absolute Stability of the Nonlinear Control Systems, I, II, III, Avtom. Telemekh., 1986, no. 3, pp. 63–73; no. 4, pp. 5–15; no. 5, pp. 38–49.

  5. Pakshin, P.V., Algebraic Verification of Absolute Stability, Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 4–6, pp. 813–815.

    MathSciNet  Google Scholar 

  6. Pyatnitskii, E.S. and Skorodinskii, V.I., A Criterion for Absolute Stability of the Nonlinear Fulse Control Systems in the Form of a Numerical Procedure, Avtom. Telemekh., 1986, no. 9, pp. 32–39.

  7. Smolyar, E.I., On Stability in Large of the Nonlinear Systems Meeting the Generalized Hurwitz Conditions, Preprint of Agrophysical Research Inst., All-Union Acad. of Agricultural Sci., Leningrad, 1986, no. 4727.

  8. Smolyar, E.I., On Counterexamples in the Problem of M.A. Aizerman, Preprint of Agrophysical Research Inst., All-Union Acad. of Agricultural Sci., Leningrad, 1986, no. 4728.

  9. Yakubovich, V.A., Linear Quadratic Problem of Optimization and the Frequency Theorem for Periodic Systems, Sib. Mat. Zh., 1986, vol. 27, no. 4, pp. 181–200.

    MATH  MathSciNet  Google Scholar 

  10. Liao Xiao Xin, The Absolute Stability of Lure direct control systems, in Theory and Appl. Nonlinear Control Syst., Amsterdam: North-Holland, 1986, pp. 513–519.

    Google Scholar 

  11. Resende, P., Kaszkurewicz, E., and Hsu, L., On the Absolute Stability of Multivariable Non-linear Systems Using a Block-tridiagonal State-space Representation, Int. J. Control, 1986, vol. 43, no. 2, pp. 643–655.

    MATH  MathSciNet  Google Scholar 

1987

  1. Barabanov, N.E., Method of Extending the Circular Criterion for the Pulse Systems of Automatic Control, in Dinamika neodnorodnykh sistem (Dynamics of Nonuniform Systems), Moscow: VNIISI, 1987, vol. 6, pp. 61–68.

    Google Scholar 

  2. Bogatyrev, A.V. and Pyatnitskii, E.S., Construction of the Piecewise-quadratic Lyapunov Functions for the Nonlinear Control Systems, Avtom. Telemekh., 1987, no. 10, pp. 30–38.

  3. Kamenetskii, V.A. and Pyatnitskii, E.S., Gradient Method of Constructing the Lyapunov Functions in the Problems of Absolute Stability, Avtom. Telemekh., 1987, no. 1, pp. 3–12.

  4. Lapin, Yu.N., On Positiveness of the Pulse Functions and Absolute Stability of the Nonlinear Systems in the Hurwitzian Angle, Avtom. Telemekh., 1987, no. 5, pp. 40–47.

  5. Meilakhs, A.M., On Variational Approach to the Problem of Absolute Stability of the Nonstationary Nonlinear Systems, Diff. Uravn., 1987, vol. 23, no. 7, pp. 1464–1466.

    MathSciNet  Google Scholar 

  6. Molchanov, A.P., Lyapunov Functions for the Nonlinear Discrete Control Systems, Avtom. Telemekh., 1987, no. 6, pp. 26–35.

  7. Rapoport, L.B., Absolute Stability of the Control Systems with Several Nonlinear Stationary Elements, Avtom. Telemekh., 1987, no. 5, pp. 66–74.

  8. Yunger, I.B., Algebraic Criteria for Absolute Stability of Nonlinear Automatic Control Systems, Avtom. Telemekh., 1987, no. 1, pp. 48–54.

  9. Grujic, L.T. and Petkovski, D.B., Robust Absolutely Stable Lurie Systems, Int. J. Control, 1987, vol. 46, no. 1, pp. 357–368.

    MATH  MathSciNet  Google Scholar 

  10. Kamenetskiy, V.A. and Pyatnitskiy, E.S., An Iterative Method of Lyapunov Function Construction for Differential Inclusions, Syst. Control Lett., 1987, no. 8, pp. 445–451.

  11. Krishnamurthy, V. and Sastry, G.V.K.R., A New Design Method for Absolute Stability of Nonlinear Systems, J. Inst. of Eng. (India). Electronics & Telecommun. Eng. Division, 1987, vol. 67, pp. 77–80.

    Google Scholar 

1988

  1. Aleksandrov, V.V., Absolute Stability of Simulation Dynamic Systems in First Approximation, Dokl. Akad. Nauk SSSR, 1988, vol. 299, no. 2, pp. 296–301.

    Google Scholar 

  2. Barabanov, N.E., On the Problem of Absolute Stability of the Pulse Automatic Control Systems, Avtom. Telemekh., 1988, no. 8, pp. 28–37.

  3. Barabanov, N.E., On the Kalman Problem, Sib. Mat. Zh., 1988, no. 3, pp. 3–11.

  4. Barabanov, N.E., New Criteria for Absolute Stability of the Automatic Control Systems with One Differentiable Nonlinearity, Dokl. Akad. Nauk SSSR, 1988, vol. 299, no. 3, pp. 570–572.

    MATH  MathSciNet  Google Scholar 

  5. Barabanov, N.E., On the Lyapunov Index of Discrete Inclusions, Avtom. Telemekh., 1988, no. 5, pp. 17–24.

  6. Levin, A.Yu., A Criterion for Absolute Nonoscillatory Stability of the Equations of the nth Order, Usp. Mat. Nauk, 1988, vol. 43, no. 5, pp. 203, 204.

    Google Scholar 

  7. Liberzon, M.R., On Motional Stability of the Axially Symmetric Rotating Flight Vehicle, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1988, no. 5, pp. 9–14.

  8. Molchanov, A.P., On Equivalence of Two Definitions of Absolute Stability for the Nonstationary Control Systems, Avtom. Telemekh., 1988, no. 10, pp. 187–189.

  9. Rapoport, L.B., Definite Sign of the Quadratic Form for Quadratic Constraints and Absolute Stability of the Nonlinear Control Systems, Dokl. Akad. Nauk SSSR, 1988, vol. 298, no. 4, pp. 822–826.

    MATH  Google Scholar 

  10. Yakubovich, V.A., Absolute Stability of the Nonlinear System with Periodic Nonstationary Linear Part, Dokl. Akad. Nauk SSSR, 1988, vol. 298, no. 2, pp. 299–303.

    MATH  Google Scholar 

  11. de la Sen, M., Guaranteed Absolute Stability in the Presence of Unmodelled Dynamics, Int. J. Syst. Sci., 1988, vol. 19, no. 1, pp. 77–96.

    MATH  Google Scholar 

  12. Grujic, L.T., Algebraic Conditions for Absolute Tracking Control of Lurie Systems, Int. J. Control, 1988, vol. 48, no. 2, pp. 729–754.

    MATH  MathSciNet  Google Scholar 

  13. Liberzon, M.R., About Absolute Stability of the Follow-up Systems, in Automatika, London: Pergamon, 1988, pp. 1555–1558.

    Google Scholar 

  14. Yakubovich, V.A., Dichotomy and Absolute Stability of Nonlinear Systems with Periodically Nonstationary Linear Part, Syst. Control Lett., 1988, vol. 11, no. 3, pp. 221–228.

    MATH  MathSciNet  Google Scholar 

1989

  1. Barabanov, N.E., New Frequency Criteria for Absolute Stability and Instability of the Automatic Control Systems with Nonstationary Nonlinearity, Diff. Uravn., 1989, vol. 25, no. 4, pp. 555–563.

    MATH  MathSciNet  Google Scholar 

  2. Kamenetskii, V.A., Method of Convolution of the Matrix Inequalities and Criteria for Absolute Stability of the Stationary Control Systems, Avtom. Telemekh., 1989, no. 5, pp. 28–39.

  3. Korenevskii, D.G., Absolute Stability of the Continuous and Discrete Nonlinear Stochastic Control Systems. Algebraic Coefficient Criteria, Dokl. Akad. Nauk SSSR, 1989, vol. 306, no. 4–6, pp. 1316–1319.

    MATH  MathSciNet  Google Scholar 

  4. Liberzon, M.R., Innor Criterion for Absolute Stability of the Nonstationary Systems, Avtom. Telemekh., 1989, no. 5, pp. 40–46.

  5. Liberzon, M.R., Innor Criterion for Absolute Stability of the Nonstationary Control Systems, Dokl. Akad. Nauk SSSR, 1989, vol. 304, no. 5, pp. 1060–1064.

    MATH  Google Scholar 

  6. Pakshin, P.V., Algebraic Criterion for Absolute Stability of the Nonlinear Stochastic Systems with Multiplicative White Noise, Sb. tr. VNII sistem. issled. (Proc. Inst. Syst. Res.), 1989, no. 14, pp. 115–123.

  7. Rapoport, L.B., On the Problem of Absolute Stability of the Control Systems with Superposition of the Nonlinear Elements, Avtom. Telemekh., 1989, no. 12, pp. 166–168.

  8. Bar-Kana, I., Absolute Stability and Robust Discrete Adaptive Control, in Proc. IFAC Workshop “Robust Adaptive Control”, 1989, pp. 171–175.

  9. Siljak, D.D., Polytopes of Nonnegative Polynomials, in Proc. 1989 American Control Conf., 1989, vol. 1, pp. 193–199.

    Google Scholar 

1990

  1. Kozyakin, V.S., Absolute Stability of the Discrete Disaligned Systems, Dokl. Akad. Nauk SSSR, 1990, vol. 312, no. 4–6, pp. 1066–1070.

    MATH  MathSciNet  Google Scholar 

  2. Kozyakin, V.S., Absolute Stability of Systems with Asynchronous Discrete Elements, Avtom. Telemekh., 1990, no. 10, pp. 56–63.

  3. Rapoport, L.G., Boundary of Absolute Stability of the Nonlinear Nonstationary Systems and its Relation with Construction of the Invariant Functions, Avtom. Telemekh., 1990, no. 10, pp. 78–86.

  4. Savkin, A.V., Criterion for Absolute Stability of the Nonlinear Control Systems with Periodic Nonstationary Linear Part, Avtom. Telemekh., 1990, no. 8, pp. 50–55.

  5. Yunger, I.B. and Gerasimov, O.I., Algebraic Criterion for Absolute Stability, Avtomatika, 1990, vol. 23, no. 2, pp. 42–45.

    MATH  MathSciNet  Google Scholar 

  6. Yakubovich, V.A., Methods of the Absolute Stability Theory in the Problems of Invariance, in Kibernetika i vychislitel’naya tekhnika (Cybernetics and Computer Science), Kiev: Naukova Dumka, 1990, vol. 85, pp. 1–13.

    Google Scholar 

  7. Cheng, Yu., Absolute Stability of Multi-regular Control System in Infinite Hurwitz Angle, Acta Math. Sin., 1990, vol. 33, no. 3, pp. 289–294.

    MATH  Google Scholar 

  8. Halanay, A. and Rasvan, V., Absolute Stability of Discrete Systems with Slope Restricted Nonlinearity, Revue Romaine des Sciences Techniques, 1990, vol. 35, no. 1, pp. 101–111.

    MathSciNet  Google Scholar 

  9. Liberzon, M.R., Adaptive Control Systems of Electromagnetic Field Influence on Materials, in Evaluation of Adaptive Control Strategies, London: Pergamon, 1990, no. 7, pp. 267–270.

    Google Scholar 

  10. Singh, V., A Generalized Approach for the Absolute Stability of Discrete-time Systems Utilizing the Saturation Nonlinearity Based on Passivity Properties, IEEE Trans. Circuits & Syst., 1990, vol. 37, no. 3, pp. 444–447.

    MATH  Google Scholar 

  11. Voronov, A.A., On Absolute Stability Criteria Improvement and Absolute Stability Regions Construction, in Nonlinear Control Syst. Design. Selected Papers from the IFAC Symposium, 1990, pp. 219–223.

  12. Yunger, I.B. and Gerasimov, O.I., New Improved Criteria of Absolute Stability for Nonlinear Dynamical Systems, in Proc. IFAC World Congr., Tallinn, 1990, vol. 6, pp. 31–35.

    Google Scholar 

1991

  1. Aisagaliev, S.A. and Magovin, M.M., On the Theory of Absolute Stability of the Controlled Systems in the Critical Cases, Preprint Kazan. Gos. Tekh. Univ., Kazan, 1991.

  2. Aleksandrova, O.V., Generalized Resonance in the Oscillatory System, Vestn. Mosk. Gos. Univ., Mat. Mekh., 1991, no. 3, pp. 89–92.

  3. Voronov, A.A., On Improving the Criterion for Absolute Stability of Systems with Differentiable Monotone Nonlinearities, in Sb. tr. VNII sistem. issled. (Proc. Inst. Syst. Res.), 1991, no. 14, pp. 22–28.

  4. Kucheev, Z.Sh. and Gerasimov, O.I., Review and Comparative Characterization of the Methods of Numerical Analysis of Absolute Stability of the Nonlinear Automatic Systems, Izv. Leningrad. Elektrotekhn. Inst., 1991, no. 441, pp. 58–62.

  5. Levin, A.G., Decomposition of the Frequency Criteria for Stability of the Multiaggregate Linear Systems, Avtom. Telemekh., 1991, no. 3, pp. 47–59.

  6. Polyak, B.T. and Tsypkin, Ya.Z., Robust Stability of Linear Systems, in Itogi Nauki Tekhn., Tekhn. Kibern., VINITI, 1991, no. 32, pp. 3–31.

  7. Polyak, B.T. and Tsypkin, Ya.Z., Robust Stability under Complex Perturbations of the Parameters, Avtom. Telemekh., 1991, no. 8, pp. 45–55.

  8. Pyatnitskii, E.S. and Rapoport, L.B., Periodic Motions and Criteria for Absolute Stability of Nonlinear Nonstationary Systems, Avtom. Telemekh., 1991, no. 10, pp. 63–73.

  9. Pyatnitskii, E.S. and Rapoport, L.B., Periodic Motions and The Boundary of Asymptotic Stability of the Selector Linear Differential Inclusions, Dokl. Akad. Nauk SSSR, 1991, vol. 321, no. 4, pp. 687–691.

    MATH  Google Scholar 

  10. Savkin, A.V., On Absolute Stability of the Nonlinear Control Systems with Nonstationary Linear Part, Avtom. Telemekh., 1991, no. 3, pp. 78–84.

  11. Skorodinskii, V.I., Iterative Methods of Testing the Frequency Criteria for Absolute Stability of the Continuous Control Systems, Avtom. Telemekh., 1991, no. 8, pp. 63–71.

  12. Tsypkin, Ya.Z., Stabilization of the Nonlinear Discrete Systems under Nonparametric Uncertainty, Avtomatika, 1991, vol. 24, no. 4, pp. 3–7.

    MATH  MathSciNet  Google Scholar 

  13. Fruchter, G., Generalized Zero Sets Location and Absolute Robust Stabilization of Continuous Nonlinear Control Systems, Automatica, 1991, vol. 27, no. 3, pp. 501–512.

    MATH  MathSciNet  Google Scholar 

  14. Halanay, A. and Rasvan, V., Absolute Stability of Feedback Systems with Several Differentiable Non-linearities, Int. J. Syst. Sci., 1991, vol. 22, no. 10, pp. 1911–1927.

    MATH  MathSciNet  Google Scholar 

  15. Lee, S. and Meerkov, S.M., Vibrational Feedback Control in the Problem of Absolute Stability, IEEE Trans. Automat. Control, 1991, vol. 36, no. 4, pp. 482–485.

    MathSciNet  Google Scholar 

  16. Liao Xiao Xin, Absolute Stability of General Lurie Control Systems, Acta Math. Sci. Engl. Ed., 1991, vol. 11, no. 1, pp. 1–12.

    MATH  Google Scholar 

  17. Tesi, A. and Vicino, A., Robust Absolute Stability of Lur’e Control Systems in Parameter Space, Avtomatika, 1991, vol. 27, no. 1, pp. 147–151.

    MATH  MathSciNet  Google Scholar 

  18. Xiao Shuxian, On Lur’e Functions for Nonlinear Systems, Control Theory Appl., 1991, vol. 8, no. 3, pp. 268–274.

    MathSciNet  Google Scholar 

1992

  1. Gerasimov, O.I. and Yunger, I.B., Frequency Algebraic Analysis of Absolute Stability of the Nonlinear Automatic Control Systems, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1992, no. 1, pp. 213–217.

  2. Levin, A.G., Precise Estimation of the Oscillation Index of the Class of Multivariable Linear Systems, Avtom. Telemekh., 1992, no. 9, pp. 65–72.

  3. Molchanov, A.P. and Morozov, M.V., Lyapunov Functions for the Nonlinear Nonstationary Discrete Control Systems with Periodic Linear Part, Avtom. Telemekh., 1992, no. 10, pp. 37–45.

  4. Morozov, M.V., On Equivalence of Two Definitions of Absolute Stability of the Nonlinear NOnstationary Control Systems with Periodic Linear Part, Avtom. Telemekh., 1992, no. 8, pp. 46–53.

  5. Savkin, A.V., Nonstationary Analog of the Kalman-Yakubovich Lemma and its Application in the System Theory, Avtomatika, 1992, vol. 25, no. 3, pp. 47–51.

    MATH  MathSciNet  Google Scholar 

  6. Spasskii, R.A., On One Problem of FV Stabilization, in Tr. 26 chtenii, posvyashch. razrab. nauch. naslediya i razvitiyu idei K.E. Tsiolkovskogo (Proc. 26th Readings on Development of Scientific Heritage and Extension of the Ideas of K.E. Tsiolkovskii), Moscow, 1992, pp. 107–109.

  7. Churilov, A.N., Frequency Criterion for Stability of the Nonlinear Pulse Systems with Even Pulsation Law, Avtom. Telemekh., 1992, no. 4, pp. 93–100.

  8. Savkin, A.V., The Kalman-Yakubovich lemma for Non-stationary systems and its Applications, Int. J. Adaptive Control & Signal Proc., 1992, vol. 6, no. 3, pp. 253–257.

    MATH  Google Scholar 

1993

  1. Aleksandrov, V.V., Krasil’nikova, I.E., and Torres, A., Absolute Stability in One-dimensional Oscillatory Systems, in Zadacha Bulgakova o maksimal’nom otklonenii i ee primenenie (Bulgakov Problem of Maximal Deviation and its Application), Moscow: Mosk. Gos. Univ., 1993, pp. 48–57.

    Google Scholar 

  2. Gerasimov, O.I. and Yunger, I.B., Matrix Criterion for Absolute Stability of the Pulse Automatic Control systems, Avtom. Telemekh., 1993, no. 2, pp. 134–139.

  3. Zhermolenko, V.N., Khing Korton, R., and Gonsales, G., Absolute Stability of Two-dimensional Systems, in Zadacha Bulgakova o maksimal’nom otklonenii i ee primenenie (Bulgakov Problem of Maximal Deviation and its Application), Moscow: Mosk. Gos. Univ., 1993, pp. 57–80.

    Google Scholar 

  4. Rapoport, L.B., Antiperiodic Motions and Algebraic Criterion for Absolute Stability of the Nonlinear Nonstationary Systems in the Three-dimensional Case, Avtom. Telemekh., 1993, no. 7, pp. 38–54.

  5. Savkin, A.V., An Analog of the Frequency Theorem for the Nonstationary Systems, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1993, no. 2, pp. 26–30.

  6. Beklemishev, N.N. and Liberzon, M.R., The Use of Inner Method in Stability Analysis of Control Systems for Special Technological Processes, in Proc. Int. Symp. Fundamentals of Discrete-Time Systems, New Mexico: TSI Press, 1993, pp. 189–194.

    Google Scholar 

  7. Halanay, A. and Ionescu, V., Generalized Discrete-time Popov-Yakubovich Theory, Syst. Control Lett., 1993, no. 1, pp. 1–6.

  8. How, J.P., Haddad, W.M., and Hall, S.R., Robust Control Synthesis Examples with Real Parameter Uncertainty Using the Popov Criterion, in Proc. Am. Control Conf., 1993, vol. 2, pp. 1090–1095.

    Google Scholar 

  9. How, J.P. and Hall, S.R., Connections between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty, in Proc. Am. Control Conf., 1993, vol. 2, pp. 1084–1089.

    Google Scholar 

  10. Liao Fucheng, Absolute Stability for a Class of Indirect Control Systems, Acta Sci. Natur. Univ. Neimenggu, 1993, vol. 24, no. 3, pp. 235–241.

    Google Scholar 

  11. Liberzon, M.R., Inner Indication of Absolute Stability for Discrete Systems, in Proc. Int. Symp. Fundamentals of Discrete-Time Syst., New Mexico: TSI Press, 1993, pp. 333–338.

    Google Scholar 

  12. Megretski, A., Necessary and Sufficient Conditions of Stability: A Multiloop Generalization of the Circle Criterion, IEEE Trans. Automat. Control, 1993, vol. 38, no. 5, pp. 753–756.

    MATH  MathSciNet  Google Scholar 

  13. Minyue, F. and Tsypkin, Ya.Z., Modified Mikhailov Plots for Robust Absolute Stability with Nonparametric Perturbations and Uncertain Nonlinearity, Int. J. Control, 1993, vol. 58, no. 4, pp. 925–932.

    Google Scholar 

  14. Nishimura, T., Mori, T., Kuroe, Y., and Kokame, H., On Application of Popov’s Theorem for Lur’e Systems with Interval Plants, Trans. Inst. Syst., 1993, vol. 6, no. 4, pp. 165–170.

    MathSciNet  Google Scholar 

  15. Rongdong Wang, Symbolic Computation Approach for Absolute Stability, Int. J. Control, 1993, vol. 58, no. 2, pp. 495–502.

    MATH  Google Scholar 

  16. Tsypkin, Ya.Z. and Polyak, B.T., Robust Absolute Stability of Continuous Systems, Int. J. Robust & Nonlinear Control, 1993, vol. 3, no. 3, pp. 231–239.

    MATH  Google Scholar 

  17. Worland, P.B., Parallel Methods for ODEs with Improved Absolute Stability Boundaries, J. Parallel & Distributed Comput., 1993, vol. 18, no. 1, pp. 25–32.

    MATH  MathSciNet  Google Scholar 

  18. Yuanji Cheng and Lina Wang, On the Absolute Stability of Multi-nonlinear Control Systems in the Critical Cases, IMA J. Math. Control & Inform., 1993, vol. 10, no. 1, pp. 1–10.

    MATH  MathSciNet  Google Scholar 

  19. Yunger, I.B. and Gerasimov, O.I., Algebraic Analysis of Absolute Stability for Uncertain Dynamical Systems with Nonlinear Time-varying Properties, Automatica, 1993, vol. 29, no. 3, pp. 763–766.

    MATH  MathSciNet  Google Scholar 

  20. Zhao Keyou, An Extended Popov Criterion for a Class of Uncertain Systems, Control Theory & Appl., 1993, vol. 10, no. 1, pp. 108–112.

    MathSciNet  Google Scholar 

1994

  1. Aleksandrova, O.V., On Estimation of Oscillations of Permanently Perturbed Systems, Vestn. Mosk. Gos. Univ., Mat. Mekh., 1994, no. 5, pp. 54–58.

  2. D’yachenko, I.V., Molchanov, A.P., and Pyatnitskii, E.C., Numerical Method of Construction of the Lyapunov Functions and Computer-aided Analysis of Stability of the Nonlinear Dynamic Systems, Avtom. Telemekh., 1994, no. 4, pp. 23–38.

  3. Alexandrov, V.V., Liberzon, M.R., and Rozov, N.Kh., On the Absolute Stability of Monomeasurable Control Systems, in Syst. Networks: Math. Theory Appl., Berlin: Academie Verlag, 1994, vol. 2, pp. 39–41.

    Google Scholar 

  4. Brusin, V.A. and Ugrinovsky, V.A., Absolute Stability Approach to Stochastic Stability of Non-linear Infinite Dimensional Feedback Evolution Equations, in Proc. IFAC World Congress, 1994, pp. 59–62.

  5. Gil, M.I., Class of Absolutely Stable Multivariable Systems, Int. J. Syst. Sci., 1994, vol. 25, no. 3, pp. 613–617.

    MATH  MathSciNet  Google Scholar 

  6. Haddad, W.M., How, J.P., Hall, S.R., and Bernstein, D.S., Extensions of Mixed-mu Bounds to Monotonic and Odd Monotonic Nonlinearities Using Absolute Stability Theory, Int. J. Control, 1994, vol. 60, no. 5, pp. 905–951.

    MATH  MathSciNet  Google Scholar 

  7. How, J.P., Hall, S.R., and Haddad, W.M., Robust Controllers for the Middeck Active Control Experiment Using Popov Controller Synthesis, IEEE Trans. Control Syst. Technology, 1994, vol. 2, no. 2, pp. 73–87.

    Google Scholar 

  8. Liberzon, M.R., Adaptive Control Systems for New Technological Processes, in Proc. Int. Aerospace Congr. IAC’94, Moscow, 1994, vol. 2, pp. 163–167.

    Google Scholar 

  9. Liberzon, M.R., Control Systems for Special Technological Processes of Metal Production, in Proc. Int. Symp. Space Technology Sci., Yokohama, 1994.

  10. Liberzon, M.R., Inner Approach for the Absolute Stability of Time-lag Dynamical Systems, in Proc. Int. Congress. Mathematicians ICM’94, Zurich, 1994.

  11. Liberzon, M.R., Stability of Rolling Mill Processes, in Proc. IFAC Conf. on ISE, Baden-Baden, 1994, pp. 29, 30.

  12. Nishimura, T., Mori, T., Kuroe, Y., and Kokame, H., Robust Absolute Stability of Lur’e Systems with Interval Plants and General Sector-type Nonlinearities, Trans. Inst. Electronics & Commun. Eng. Japan, 1994, vol. 114-C, no. 2, pp. 239–244.

    Google Scholar 

  13. Premarante, K. and Jury, E.I., Discrete-time Positive-real Lemma Revisited: The Discrete-time Counter Part of the Kalman-Yakubovitch Lemma, IEEE Trans. Circuits & Syst., 1994, vol. 41, no. 11, pp. 747–750.

    Google Scholar 

  14. Zhang Jiye and Shu Zhong-zhou, Necessary and Sufficient Criteria for Absolute Stability of the Direct Control System, Appl. Math. & Mechanics, 1994, vol. 15, no. 3, pp. 245–251.

    MathSciNet  Google Scholar 

1995

  1. Molchanov, A.P. and Morozov, M.V., Robust Absolute Stability of the Nonstationary Discrete Control Systems with Periodic Constraints, Avtom. Telemekh., 1995, no. 10, pp. 93–100.

  2. Rapoport, L.B., Antiperiodic Motions and the Algebraic Criterion for Asymptotic Stability of the Selector Linear Differential Inclusions in the Two-dimensional Case, Avtom. Telemekh., 1995, no. 1, pp. 56–63.

  3. Churilova, M.Yu., An Analog of the Circular Criterion for Absolute Stability for Variable-delay Systems, Avtom. Telemekh., 1995, no. 2, pp. 52–56.

  4. Brusin, V.A. and Ugrinovskii, V.A., Absolute Stability Approach to Stochastic Stability of Infinite-dimensional Nonlinear Systems, Automatica, 1995, vol. 31, no. 10, pp. 1453–1458.

    MATH  MathSciNet  Google Scholar 

  5. Feng-Hsiag Hsiao, Jer-Guang Hsieh, and Jaion-Shea Chang, New Algebraic Criteria for Absolute Stability of Nonlinear Systems, Int. J. Robust & Nonlinear Control, 1995, vol. 5, no. 6, pp. 591–607.

    MATH  MathSciNet  Google Scholar 

  6. Gelig, A.Kh. and Churilov, A.N., Frequency-domain Criteria for Absolute Stability of Nonlinear Systems with Various Types of Pulse Modulation, in Proc. Eur. Control Conf., 1995, vol. 3, pp. 2251–2255.

    Google Scholar 

  7. Kaiqi Xiong, Necessary and Sufficient Conditions for the Existence of a G-type Lyapunov Function, Automatica, 1995, vol. 31, no. 5, pp. 787–791.

    MATH  MathSciNet  Google Scholar 

  8. Liberzon, M.r., Stability of Control Systems for New Technological Processes of Special Metal Production, in Proc. Int. Congr. Industrial Appl. Math., Hamburg 1995, pp. 167–171.

  9. Megretski, A., Combining L1 and L2 Methods in the Robust Stability and Performance Analysis of Nonlinear Systems, in Proc. IEEE Conf. Decision and Control, 1995, vol. 3, pp. 3176–3781.

    Google Scholar 

  10. Savkin, A.V. and Petersen, I.R., A Method for Robust Stabilization Related to the Popov Stability Criterion, Int. J. Control, 1995, vol. 62, no. 5, pp. 1105–1115.

    MATH  MathSciNet  Google Scholar 

  11. Wada, T., Ikeda, M., Ohta, Y., and Siljak, D.D., Parametric Absolute Stability of Multivariable Lur’e Systems—a Popov-type Condition and Application of Polygoninterval Arithmetic, Trans. Soc. Instrument Control Eng., 1995, vol. 31, no. 9, pp. 1329–1335.

    Google Scholar 

  12. Zhang Jiye, Necessary and Sufficient Conditions for the Absolute Stability of Discrete Type Lurie Control System, Appl. Math. & Mechanics, 1995, vol. 16, no. 10, pp. 995–1001.

    MATH  Google Scholar 

1996

  1. Badmaeva, S.V. and Barabanov, N.E., Strengthening of the Criteria for Absolute Stability of the Automatic Control Systems with Several Nonstationary Nonlinearities, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1996, no. 1, pp. 5–9.

  2. Barkin, A.I., On Two Criteria for Absolute Stability of Discrete Systems, Avtom. Telemekh., 1996, no. 1, pp. 21–26.

  3. Malikov, A.I., Absolute Stability of the Nonlinear Controlled Systems with Random Variations of their Structure, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1996, no. 3, pp. 19–30.

  4. How, J.P., Collins, E.G., and Haddad, W.M., Optimal Popov Controller Analysis and Synthesis for Systems with Real Parameter Uncertainties, IEEE Trans. Control Syst. Technology, 1996, vol. 4, no. 2, pp. 200–207.

    Google Scholar 

  5. Kaiqi Xiong, Necessary and Sufficient Conditions for the Existence of a Lyapunov Function with ‘a Quadratic Form Plus an Integral Term,’ Int. J. Control, 1996, vol. 64, no. 4, pp. 707–719.

    Google Scholar 

  6. Liberzon, M.R., Improvement of Plasticity and Other Properties of Metals by Electromagnetic Field, in Proc. 19th Int. Congr. Theoretical Appl. Mechanics, Kyoto, 1996.

  7. Pyatnitsky, E.S. and Rapoport, L.B., Criteria of Asymptotic Stability of Differential Inclusions and Periodic Motions of Time-varying Nonlinear Control Systems, IEEE Trans. Circuits & Syst., 1996, vol. 43, no. 3, pp. 219–229.

    Google Scholar 

  8. Rasvan, V., Stabilization and Decoupling Control Applied in Vehicle Dynamics, in Proc. 1995 IFAC Workshop Control Appl. Optim. A Postprint Volume, London: Pergamon, 1996, pp. 97–102.

    Google Scholar 

  9. Savkin, A.V. and Evans, R.J., Robust Output Feedback Stabilizability via Controller Switching, in Proc. IEEE Conf. Decision Control, 1996, vol. 3, pp. 2654–2658.

    Google Scholar 

1997

  1. Molchanov, A.P. and Morozov, M.V., Sufficient Conditions for Robust Stability of the Linear Nonstationary Control Systems with Periodic Constraints, Avtom. Telemekh., 1997, no. 1, pp. 100–107.

  2. Molchanov, A.P. and Morozov, M.V., Algorithms for Analysis of Robust Stability of the Linear Nonstationary Control Systems with Periodic Constraints, Avtom. Telemekh., 1997, no. 5, pp. 100–111.

  3. Curran, P.F., Suykens, J.A.K., and Chua, L.O., Absolute Stability Theory and Master-Slave Synchronization, Int. J. Bifurcat. & Chaos Appl. Sci. & Eng., 1997, vol. 7, no. 12, pp. 2891–2896.

    MATH  MathSciNet  Google Scholar 

  4. Grujic, L.T., New Lyapunov Methodology: Absolute Stability of Lurie-Postnikov System, in Proc. IFAC Conf. Control Industrial Syst. ‘Control for the Future of the Youth,’ 1997, vol. 1, pp. 409–414.

    Google Scholar 

  5. Liberzon, M.R., New Technological Process for Preparation of Sandwich from Metals, in Proc. EUROMECH 360 Symp., Saint Etienne, 1997, pp. 135–137.

  6. Moheimani, S.O.R., Savkin, A.V., and Petersen, I.R., Minimax Optimal Control of Discrete-time Uncertain Systems with Structured Uncertainty, Dynamics & Control, 1997, vol. 7, no. 1, pp. 5–24.

    MATH  MathSciNet  Google Scholar 

  7. Pakshin, P.V., Robust Absolute Stability of Jumping Stochastic Systems, in Proc. IFAC Symp. Robust Control Design. (ROCOND’97), 1997, pp. 159–164.

  8. Rapoport, L.B., New Frequency Criteria for Analysis of Multivariable Lure Systems, in Proc. IFAC World Congr., 1997, pp. 25–30.

  9. Ugrinovsky, V.A. and Petersen, I.R., Absolute Stabilization and Minimax Optimal Control of Uncertain Systems with Stochastic Uncertainty, in Proc IFAC Symp. on Robust Control Design (ROCOND’97), 1997, pp. 125–130.

  10. Wada, T., Ikeda, M., Ohta, Y., and Siljak, D.D., Parametric Absolute Stability of Multivariable Lure Systems: An LMI Condition and Application to Polytopic Systems, in Proc. IFAC World Cong., 1997, pp. 19–24.

1998

  1. Bliman, P.A. and Krasnosel’skii, M.A., Popov Criterion in the Problem of Forced Oscillations in the Control Systems, Avtom. Telemekh., 1996, no. 4, pp. 3–14.

  2. Kaizer, K. and Korenevskii, D.G., Algebraic Coefficient Attributes of Absolute Stability of the Linear Difference Systems with Continuous Time and Delay, Avtom. Telemekh., 1998, no. 1, pp. 22–27.

  3. Liberzon, M.R., Extension of the Innor Method of the Absolute Stability Theory to the Delay Systems, in Nauchn. tr. Mosk. aviats. tekhnol. in-ta—Ross. gos. tekhnol. un-ta im. K.E. Tsiolkovskogo (Proc. Moscow Aviation Technol. Inst.—K.E. Tsiolkovskii Russian State Technol Univ.), Moscow: LATMES, 1998, vol. 1 (73), pp. 336–340.

    Google Scholar 

  4. Tseligorov, N.A., Methodology of Grapho-analitical Study of Absolute Stability of MIMO Nonlinear Pulse Automatic Systems, Izv. Vuzov, Elektromekh., 1998, no. 4, pp. 72–75.

  5. Yakubovich, V.A., Quadratic Criterion for Absolute Stability, Dokl. Ross. Akad. Nauk, 1998, vol. 361, no. 5, pp. 608–611.

    MATH  MathSciNet  Google Scholar 

  6. Bucci, F., Absolute Stability of Feedback Systems in Hilbert Spaces, Izv. Vuzov, Elektromekh., 1998, pp. 24–39.

  7. Chen, Ya., Chen, Sh., and Liu, J., Frequency Theorem (Kalman-Yakubovich lemma) in Control Theory, Control Theory & Appl., 1998, vol. 15, no. 4, pp. 477–488.

    MATH  MathSciNet  Google Scholar 

  8. Curran, P.F. An Overview of Absolute Stability Theory, in Proc. Int Specialist Workshop on Nonlinear Dynamics of Electronic Syst., Budapest, 1998, pp. 63–72.

  9. de la Sen, M. and Jugo, J., Absolute Stability and HyperStability of a Class of Hereditary Systems, Informatica (Ljubljana), 1998, vol. 9, no. 2, pp. 195–208.

    MATH  Google Scholar 

  10. Hagiwara, T., Kuroda, G., and Araki, M., Popov-type Criterion for Stability of Nonlinear Sampled-data Systems, Autornatica, 1998, vol. 34, no. 6, pp. 671–682.

    MATH  MathSciNet  Google Scholar 

  11. Liberzon, M.R., Inners and Absolute Stability of Time-lag Systems, in Proc. Int. Congr. Mathematicians, Berlin, 1998.

  12. Poogyeon Park and Sang Woo Kim, A Revisited Tsypkin Criterion for Discrete-time Nonlinear Lur’e Systems with Monotonic Sector-restrictions, Automatica, 1998, vol. 34, no. 11, pp. 1417–1420.

    MathSciNet  Google Scholar 

  13. Savkin, A.V. and Petersen, I.R., Robust Stabilization of Discrete-time Uncertain Nonlinear Systems, J. Optim. Theory & Appl., 1998, vol. 96, no. 1, pp. 87–107.

    MATH  MathSciNet  Google Scholar 

  14. Wada, T., Ikeda, M., Ohta, Y., and Siljak, D.D., Parametric Absolute Stability of Lur’e Systems, IEEE Trans. Automat. Control, 1998, vol. 43, no. 11, pp. 1649–1653.

    MATH  MathSciNet  Google Scholar 

1999

  1. Jury, E.I., Premaratne, K., and Ekanaiake, M.M., Robust Absolute Stability of Discrete Systems, Avtom. Telemekh., 1999, no. 3, pp. 97–118.

  2. Dudnikov, E.E., Stabilization of One-layer Neural Feedback Networks, Neirokomp’yutery: Razrabotka, Primenenie, 1999, no. 1, pp. 38–46.

  3. Dudnikov, E.E. and Rybashov, M.V., On Absolute Stability of a Class of Neural Feedback Networks, Avtom. Telemekh., 1999, no. 12, pp. 33–40.

  4. Kogan, M.M., Minimax Approach to the Design of Absolute Stabilizing Controllers for the Nonlinear Lur’s Systems, Avtom. Telemekh., 1999, no. 5, pp. 78–91.

  5. Tseligorov, N.A., Absolute Stability Conditions for the Interval Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1999, no. 2, pp. 10–13.

  6. Bliman, P.A., Extension of Popov Criterion to Time-varying Nonlinearities: LMI, Frequency and Graphic Conditions, Stability and Stabilization of Nonlinear Systems, London: Springer, 1999, no. 246, pp. 95–114.

    Google Scholar 

  7. Guo Lei, Zang Minglei, and Feng Chunbo. Nonlinear Controller Design for Absolute Stabilization Control Problems, Control Theory & Appl., 1999, vol. 16, no. 6, pp. 788–792.

    MATH  MathSciNet  Google Scholar 

  8. Haddad, W.M., Chellaboina, V.S., and Kablar, N.A., Nonlinear Impulsive Dynamical Systems. I. Stability and dissipativity, in Proc. IEEE Conf. Decision and Control, 1999, vol. 5, pp. 4404–4422.

    Google Scholar 

  9. Liberzon, M.R., On the Stability of Controlled Flight of an Axisymmetric Rotating Vehicle with Incomplete Model Information, in Proc. Am. Control Conf., San Diego, 1999, vol. 5, pp. 3530–3533.

    Google Scholar 

  10. Rapoport, L.B., Estimation of an Attraction Domain for Multivariable Lur’e Systems using Looseless Extension of the S-procedure, in Proc. Am. Control Conf., San Diego, 1999, vol. 4, pp. 2395, 2396.

    Google Scholar 

  11. Zhang Jiye, Wu Pingbo, and Zeng Jing, The Absolute Stability of Several Classes of Nonlinear Control Systems, J. Southwest Jiaotong University (English Edition), 1999, vol. 7, no. 1, pp. 79–86.

    MATH  Google Scholar 

2000

  1. Yakubovich, V.A. and Yakubovich, D.V., A Local Analog of the Popov Frequency Criterion for Absolute Stability of the Nonlinear System, Dokl. Ross. Akad. Nauk, 2000, vol. 371, no. 4, pp. 462–465.

    MATH  MathSciNet  Google Scholar 

  2. Banos, A. and Barreiro, A., Stability of Non-linear QFT Designs Based on Robust Absolute Stability Criteria, Int. J. Control, 2000, vol. 73, no. 1, pp. 74–88.

    MATH  MathSciNet  Google Scholar 

  3. Bliman, P.-A., Extension of Popov Absolute Stability Criterion to Non-autonomous Systems with Delays, Int. J. Control, 2000, vol. 73, no. 15, pp. 1349–1361.

    MATH  MathSciNet  Google Scholar 

  4. Brockett, R.W. and Liberzon, D.M., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Automat. Control, 2000, vol. 45, no. 7, pp. 1279–1289.

    MATH  MathSciNet  Google Scholar 

  5. Diamond, P. and Opoitsev, V., Absolute Stability of Positive Systems with Differential Constraints, Int. J. Control, 2000, vol. 73, no. 3, pp. 210–218.

    MATH  MathSciNet  Google Scholar 

  6. Liberzon, M.R. and Matveev, A.E., Calculations Method of Absolute Stability Analysis of Dynamic Systems with Use of Inner Approach, Proc. Int. Conf. SCAN2000, Karlsruhe, 2000, pp. 72, 73.

  7. Logemann, H. and Curtain, R.F., Absolute Stability Results for Well-posed Infinite-dimensional Systems with Applications to Low-gain Integral Control, ESAIM Control. Optim. Calculus of Variations, 2000, no. 5, pp. 395–424.

  8. Polanski, A., On Absolute Stability Analysis by Polyhedral Lyapunov Functions, Automatica, 2000, vol. 36, no. 4, pp. 573–578.

    MATH  MathSciNet  Google Scholar 

  9. Wada, T., Ikeda, M., Ohta, Y., and Siljak, D.D., Parametric Absolute Stability of Multivariable Lur’e Systems, Automatica, 2000, vol. 36, no. 9, pp. 1365–1372.

    MATH  MathSciNet  Google Scholar 

  10. Yakubovich, V.A., Necessity in Quadratic Criterion for Absolute Stability, Int. J. Robust and Nonlinear Control, 2000, vol. 10, no. 11, pp. 889–907.

    MATH  MathSciNet  Google Scholar 

  11. Yang Bin and Chen Mianyun, New Criteria on the Absolute Robust Stability of Lurie Control Systems, J. Huazhong (Central China) University of Science & Technology, 2000, vol. 28, no. 2, pp. 5–7.

    MATH  MathSciNet  Google Scholar 

2001

  1. Zhermolenko, V.N., Robust Stabilization of the Parametrically Perturbed Systems, Avtom. Telemekh., 2001, no. 2, pp. 122–135.

  2. Bliman, P.-A., Lyapunov-Krasovskii Functionals and Frequency Domain: Delay-independent Absolute Stability Criteria for Delay Systems, Int. J. Robust and Nonlinear Control, 2001, vol. 11, no. 8, pp. 771–788.

    MATH  MathSciNet  Google Scholar 

  3. Brogliato, B., Absolute Stability and the Lagrange-Dirichlet Theorem with Monotone Multivalued Mappings, in Proc. IEEE Conf. Decision and Control, 2001, vol. 1, pp. 27–32.

    Google Scholar 

  4. Chu, T., Huang, L., and Wang, L., Absolute Stability and Guaranteed Domain of Attraction for MIMO Discrete-time Lur’e Systems, in Proc. IEEE Conf. Decision and Control, 2001, vol. 2, pp. 1711–1716.

    Google Scholar 

  5. Chu, T., Huang, L., and Wang, L., Guaranteed Absolute Stability and Robustness of a Class of Delay Systems with Local Sector Nonlinearities via Piecewise Linear Lyapunov Function, in Proc. Am. Control Conf., 2001, vol. 6, pp. 4212–4217.

    Google Scholar 

  6. Gan, Z., The Robust Absolute Stability of Discrete-time Interval Lurie System, in Proc. IEEE Conf. Decision and Control, 2001, vol. 2, pp. 1991, 1992.

    Google Scholar 

  7. Molchanov, A. and Liu, D., Necessary and Sufficient Conditions for Robust Absolute Stability of Time-varying Nonlinear Continuous-time Systems, in Proc. IEEE Conf. Decision and Control, 2001, vol. 1, pp. 45–50.

    Google Scholar 

  8. Pandolfi, L., The Lur’e Problem for a Distributed System: The Multivariable Case, J. Inverse and Ill-Posed Problems, 2001, vol. 9, no. 2, pp. 163–175.

    MATH  MathSciNet  Google Scholar 

  9. Ruan, S., Absolute Stability, Conditional Stability and Bifurcation in Kolmogorov-type Predator-Prey Systems with Discrete Delays, Quarterly Appl. Math., 2001, vol. 59, no. 1, pp. 159–173.

    MATH  Google Scholar 

  10. Sun, J., Deng, F., and Liu, Y., Robust Absolute Stability of General Interval Lur’e Type Nonlinear Control Systems, J. Syst. Eng. Electron., 2001, vol. 12, no. 4, pp. 46–52.

    MATH  Google Scholar 

  11. Yasinskaya, O.A., Absolute Stability in the Mean Square of Stochastic Systems of Automatic Control with Nonlinear Feedback, J. Automat. Inform. Sci., 2001, vol. 33, no. 3, pp. 27–33.

    Google Scholar 

2002

  1. Atherton, D.P. and Tan, N., The Absolute Stability of Uncertain Nonlinear Systems Using New Formulations of the Circle Criteria, in Proc. IEEE Conf. Decision and Control, 2002, vol. 2, pp. 2284, 2285.

    Google Scholar 

  2. Bliman, P.-A., Absolute Stability Criteria with Prescribed Decay Rate for Finite-dimensional and Delay Systems, Automatica, 2002, vol. 38, no. 11, pp. 2015–2019.

    MATH  MathSciNet  Google Scholar 

  3. Hsu, L., De Oliveira, M.C., and Geromel, J.C., A New Absolute Stability Test for Systems with State-dependent Perturbations, Int. J. Robust and Nonlinear Control, 2002, vol. 12, no. 14, pp. 1209–1226.

    MATH  Google Scholar 

  4. Liu, D. and Molchanov, A., Criteria for Robust Absolute Stability of Time-varying Nonlinear Continuous-time Systems, Automatica, 2002, vol. 38, no. 4, pp. 627–637.

    MATH  MathSciNet  Google Scholar 

  5. Molchanov, A. and Liu, D., Robust Absolute Stability of Time-varying Nonlinear Discrete-time Systems, IEEE Trans. Circuits and Syst. L Fundamental Theory and Appl., 2002, vol. 49, no. 8, pp. 1129–1137.

    MathSciNet  Google Scholar 

  6. Wang, R., Algebraic Criteria for Absolute Stability, Syst. Control Lett., 2002, vol. 47, no. 5, pp. 401–416.

    MATH  Google Scholar 

2003

  1. Bondarko, V.A. and Fradkov, A.L., Necessary and Sufficient Conditions for Passifiability of the Linear Distributed Systems, Avtom. Telemekh., 2003, no. 4, pp. 3–17.

  2. Fabbri, R., Impram, S.T., and Johnson, R., On a Criterion of Yakubovich Type for the Absolute Stability of Nonautonomous Control Processes, Int. J. Math. Math. Sci., 2003, no. 16, pp. 1027–1041.

  3. Guo, S., Yan, S., and Wen, S., Absolute Stability Criteria of Lurie-type Nonlinear Systems with MIMO Bounded Time-delays, Am. Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 2003, vol. 116, no. 2, pp. 695–700.

    Google Scholar 

  4. He, Y. and Wu, M., Absolute Stability for Multiple Delay General Lur’e Control Systems with Multiple Nonlinearities, J. Comput. Appl. Math., 2003, vol. 159, no. 2, pp. 241–248.

    MATH  MathSciNet  Google Scholar 

  5. Hu, T., Huang, B., and Lin, Z., Absolute Stability with a Generalized Sector Condition, in Proc. Am. Control Conf., 2003, vol. 3, pp. 1855–1860.

    Google Scholar 

  6. Lee, L. and Chen, J.L., Strictly Positive Real Lemma and Absolute Stability for Discrete-time Descriptor Systems, IEEE Trans. Circuits and Syst. I: Fundamental Theory Appl., 2003, vol. 50, no. 6, pp. 788–794.

    MathSciNet  Google Scholar 

  7. Lu, R.Q., Zhou, W.N., Su, H.Y., and Chu, J., A New Absolute Stability and Stabilization Conditions for a Class of Lurie Uncertain Time-delay Systems, in Proc. IEEE Int. Conf. Syst., Man and Cybernetics, 2003, vol. 2, pp. 1916–1921.

    Google Scholar 

  8. Margaliot, M. and Langholz, G., Necessary and Sufficient Conditions for Absolute Stability: The Case of Second-order Systems, IEEE Trans. Circuits Syst. I: Fundamental Theory Appl., 2003, vol. 50, no. 2, pp. 227–234.

    MathSciNet  Google Scholar 

  9. Wulff, K., Foy, J., and Shorten, R., Comments on Periodic and Absolute Stability for Switched Linear Systems, in Proc. Am. Control Conf., 2003, vol. 4, pp. 3226, 3227.

    Google Scholar 

  10. Yu, L., Han, Q.-L., Yu, S., and Gao, J., Delay-dependent Conditions for Robust Absolute Stability of Uncertain Time-delay Systems, in Proc. IEEE Conf. Decision and Control, 2003, vol. 6, pp. 6033–6037.

    Google Scholar 

  11. Zevin, A.A. and Pinsky, M.A., A New Approach to the Lur’e Problem in the Theory of Absolute Stability, SIAM J. Control Optim., 2003, vol. 42, no. 5, pp. 1895–1904.

    MATH  MathSciNet  Google Scholar 

2004

  1. Al’tshuller, D., Proskuryakov, A.V., and Yakubovich, V.A., Frequency Criteria for Dichotomy and Absolute Stability of the Integral Equations with Quadratic Delay Relations, Dokl. Ross. Akad. Nauk, 2004, vol. 399, no. 6, pp. 747–752.

    Google Scholar 

  2. Spasskii, R.A., Invariance and Absolute Stability of a Cass of the Control Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2004, no. 5, pp. 5–9.

  3. Bochev, P. and Gunzburger, M., An Absolutely Stable Pressure-Poisson Stabilized Finite Element Method for the Stokes Equations, SIAM J. Numerical Anal., 2004, vol. 42, no. 3, pp. 1189–1207.

    MATH  MathSciNet  Google Scholar 

  4. Brogliato, B., Absolute Stability and the Lagrange-Dirichlet Theorem with Monotone Multivalued Mappings, Syst. Control Lett., 2004, vol. 51, no. 5, pp. 343–353.

    MathSciNet  Google Scholar 

  5. Gao, J., Pan, H., and Dai, W., A Delay-dependent Criterion for Robust Absolutely Stability of Uncertain Lurie Type Control Systems, in Proc. World Congr. Intelligent Control and Automation (WCICA), 2004, vol. 1, pp. 928–930.

    Google Scholar 

  6. Hagen, G., Absolute Stability of a Heterogeneous Semilinear Dissipative Parabolic PDE, in Proc. IEEE Conf. Decision and Control, 2004, vol. 3, pp. 2429–2434.

    Google Scholar 

  7. Hu, T. and Lin, Z., Absolute Stability Analysis Through a Connection to Saturation Nonlinearities, in Proc. IEEE Conf. Decision and Control, 2004, vol. 5, pp. 5487–5492.

    Google Scholar 

  8. Hu, T., Huang, B., and Lin, Z., Absolute Stability with a Generalized Sector Condition Only, IEEE Trans. Automatic Control, 2004, vol. 49, no. 4, pp. 535–548.

    MathSciNet  Google Scholar 

  9. Impram, S.T. and Munro, N., Absolute Stability of Nonlinear Systems with Disc and Norm-bounded Perturbations, Int. J. Robust and Nonlinear Control, 2004, vol. 14, no. 1, pp. 61–78.

    MATH  MathSciNet  Google Scholar 

  10. Margaliot, M. and Gitizadeh, R., The Problem of Absolute Stability: A Dynamic Programming Approach, Automatica, 2004, vol. 40, no. 7, pp. 1247–1252.

    MATH  MathSciNet  Google Scholar 

  11. Xu, B., Liu, X., and Liao, X., Absolute Stability of Lurie Systems with Impulsive Effects, Comput. Math. Appl., 2004, vol. 47, no. 2–3, pp. 419–425.

    MATH  MathSciNet  Google Scholar 

  12. Yang, Y., Duan, Z.S., and Lin, H., Absolute Stabilization Based on Circle Criterion: H and LMI Approach, in Proc. Asian Control Conf., 2004, vol. 1, pp. 215–221.

    MATH  Google Scholar 

  13. Zevin, A.A. and Pinsky, M.A., A New Approach to the Lur’e Problem in the Theory of Absolute Stability, SIAM J. Control Optim., 2004, vol. 42, no. 5, pp. 1895–1904.

    MathSciNet  Google Scholar 

  14. Zhang, M., Hu, D.-W., and Xie, H.-W., Absolute Stability of the Discrete System, J. National Univ. of Defense Tech., 2004, vol. 26, pp. 99–102.

    Google Scholar 

2005

  1. Afonin, S.M., Absolute Stability of the Control System of Piezo-transducer Deformation, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2005, no. 2, pp. 112–119.

  2. Zhermolenko, V.N., Oscillativity of Two-dimensional Bilinear Systems, Avtom. Telemekh., 2005, no. 9, pp. 27–39.

  3. Zevin, A.A., Solution of the Generalized Lur’e Problem for Two Classes of Controlled Systems, Dokl. Ross Akad. Nauk, 2005, vol. 403, no. 1, pp. 25–28.

    MATH  MathSciNet  Google Scholar 

  4. Leonov, G.A., Necessary and Sufficient Conditions for Absolute Stability of the Two-dimensional Non-stationary Systems, Avtom. Telemekh., 2005, no. 7, pp. 43–53.

  5. Pakshin, P.V. and Pozdyaev, V.V., Existence Criterion for the General Quadratic Lyapunov Function of the Set of Linear Second-order Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2005, no. 4, pp. 22–27.

  6. Rapoport, L.B., Extension of the S-procedure and Analysis of the MIMO Control Systems Using Linear Matrix Inequalities, Avtom. Telemekh., 2005, no. 1, pp. 37–48.

  7. He, Y. and Wu, M., Delay-dependent Conditions for Absolute Stability of Lurie Control Systems with Time-varying Delay, Acta Automatica Sinica, 2005, vol. 31, no. 3, pp. 475–478.

    MathSciNet  Google Scholar 

  8. Hu, T. and Lin, Z., Absolute Stability Analysis of Discrete-time Systems with Composite Quadratic Lyapunov Functions, IEEE Trans. Automat. Control., 2005, vol. 50, no. 6, pp. 781–797.

    MathSciNet  Google Scholar 

  9. Liu, X., Lay, T.K., and Zhang, Y., Absolute Stability of Impulsive Control Systems with Time Delay, Nonlinear Analysis, Theory, Methods Appl., 2005, vol. 62, no. 3, pp. 429–453.

    MATH  Google Scholar 

2006

  1. V.A. Yakubovich. Life and List of Publications (on His Eightieth Anniversary), Avtom. Telemekh., 2006, no. 10, pp. 4–19.

  2. Andrievskii, B.R. and Fradkov, A.L., Method of Passification in the Problems of Adaptive Control, Estimation, Synchronization, Avtom. Telemekh., 2006, no. 11, pp. 3–37.

  3. Gelig, A.Kh. and Churilov, A.N., Frequency Methods in the Theory of Pulse-Modulated Control Systems, Avtom. Telemekh., 2006, no. 11, pp. 60–76.

  4. Gusev, S.V. and Likhtarnikov, A.L., Studies on the History of the Kalman-Popov-Yakubovich Lemma and S-Procedure, Avtom. Telemekh., 2006, no. 11, pp. 77–121.

  5. Leonov, G.A., Phase Synchronization: Theory and Applications, Avtom. Telemekh., 2006, no. 10, pp. 47–85.

  6. Pakshin, P.V. and Ugrinovskii, V.A., Stochastic Problems of Absolute Stability, Avtom. Telemekh., 2006, no. 11, pp. 122–158.

  7. Zhermolenko, V.N., Periodic Motions and the Criteria for Absolute Stability, Instability, and Controllability of the Two-dimensional Bilinear Systems, Avtom. Telemekh., 2006, no. 8, pp. 12–35.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.R. Liberzon, 2006, published in Avtomatika i Telemekhanika, 2006, No. 10, pp. 86–119.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liberzon, M.R. Essays on the absolute stability theory. Autom Remote Control 67, 1610–1644 (2006). https://doi.org/10.1134/S0005117906100043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117906100043

PACS number

Navigation