Skip to main content
Log in

Membranolytic Effects of KT2 on Gram-Negative Escherichia coli Evaluated by Atomic Force Microscopy

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

KT2 is a cationic antimicrobial peptide belonging to Crocodylus siamensis leucrocin I analogs. The mode of action of this compound taken at lethal concentration includes translocation into bacterial cells where binding to DNA is presumed to occur. However, the effects of KT2 on bacterial membrane have not been completely elucidated to date. In this study, a LIVE/DEAD staining technique was used to estimate the appropriate time of peptide-bacteria interaction. The results indicated more than 90% of Escherichia coli population was killed at density of ∼5 × 108 CFU/mL within 30 min after treatment with KT2 at MIC and 10 × MIC. The effects of KT2 on bacterial cells were investigated by the atomic force microscopy (AFM). At near MICs, the peptide induced heavy indentation of the bacterial surface as well as cellular collapse. Conversely, at concentrations of several times the MIC the potential to kill bacteria was greatly increased as judged by the induction of multiple membrane buds on the cell surface. Therefore, the collected results indicate that KT2 can cause different effects on bacterial surface which are positively correlated in magnitude and severity with peptide concentration via membranolytic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ventola, C.L., Pharm. Ther., 2015, vol. 40, no. 4, pp. 277–283.

    Google Scholar 

  2. Matsuzaki, K., Biochim. Biophys. Acta, 2009, vol. 1788, no. 8, pp. 1687–1692.

    Article  CAS  Google Scholar 

  3. Brogden, K., Nat. Rev. Microbiol., 2005, vol. 3, no. 3, pp. 238–250.

    Article  CAS  Google Scholar 

  4. Blondelle, S. and Lohner, K., Biopolymers, 2000, vol. 55, no. 1, pp. 74–87.

    Article  CAS  Google Scholar 

  5. Hong, S., Park, T., and Lee, K., Peptides, 2001, vol. 22, no. 10, pp. 1669–1674.

    Article  CAS  Google Scholar 

  6. Bechinger, B., Biochim. Biophys. Acta, 1999, vol. 1462, no. 1–2, pp. 157–183.

    Article  CAS  Google Scholar 

  7. Yang, L., Harroun, T., Weiss, T., Ding, L., and Huang, H., Biophys. J., 2001, vol. 81, no. 3, pp. 1475–1485.

    Article  Google Scholar 

  8. Wildman, K. H., Lee, D., and Ramamoorthy, A., Biochemistry, 2003, vol. 42, no. 21, pp. 6545–6558.

    Article  Google Scholar 

  9. Yamaguchi, S., Hong, T., Waring, A., Lehrer, R., and Hong, M., Biochemistry, 2002, vol. 41, no. 31, pp. 9852–9862.

    Article  CAS  Google Scholar 

  10. Yang, L., Harroun, T., Heller, W., Weiss, T., and Huang, H., Biophys. J., 1998, vol. 75, no. 2, pp. 641–645.

    Article  CAS  Google Scholar 

  11. Gazit, E., Boman, A., Boman, H., and Shai, Y., Biochemistry, 1995, vol. 34, no. 36, pp. 11 479–11 488.

    Article  Google Scholar 

  12. Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., and Shai, Y., Biochemistry, 1992, vol. 31, no. 49, pp. 12 416–12 423.

    Article  Google Scholar 

  13. Wong, H., Bowie, J., and Carver, J., Eur. J. Biochem., 1997, vol. 247, no. 2, pp. 545–557.

    Article  CAS  Google Scholar 

  14. Boman, H., Agerberth, B., and Boman, A., Infect. Immun., 1993, vol. 61, no. 7, pp. 2978–2984.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, C., Kim, H., and Kim, S., Biochem. Biophys. Res. Commun., 1998, vol. 244, no. 1, pp. 253–257.

    Article  CAS  Google Scholar 

  16. Subbalakshmi, C. and Sitaram, N., FEMS Microbiol. Lett., 1998, vol. 160, no. 1, pp. 91–96.

    Article  CAS  Google Scholar 

  17. Patrzykat, A., Friedrich, C., Zhang, L., Mendoza, V., and Hancock, R., Antimicrob. Agents Chemother., 2002, vol. 46, no. 3, pp. 605–614.

    Article  CAS  Google Scholar 

  18. Podda, E., Benincasa, M., Pacor, S., Micali, F., Mattiuzzo, M., Gennaro, R., and Scocchi, M., Biochim. Biophys. Acta, 2006, vol. 1760, no. 11, pp. 1732–1740.

    Article  CAS  Google Scholar 

  19. Anunthawan, T., Yaraksa, N., Phosri, S., Theansungnoen, T., Daduang, S., Dhiravisit, A., and Thammasirirak, S., Bioorg. Med. Chem. Lett., 2013, vol. 23, no. 16, pp. 4657–4662.

    Article  CAS  Google Scholar 

  20. Anunthawan, T., Fuente–Núñez, C.D.L., Hancock, R., and Klaynongsruang, S., Biochim. Biophys. Acta, 2015, vol. 1848, no. 6, pp. 1352–1358.

    Article  CAS  Google Scholar 

  21. Theansungnoen, T., Maijaroen, S., Jangpromma, N., Yaraksa, N., Daduang, S., Temsiripong, T., et al., Protein J., 2016, vol. 35, no. 3, pp. 202–211.

    Article  CAS  Google Scholar 

  22. Ozkan, A., Topal, A., Dana, A., Guler, M., and Tekinay, A., Micron, 2016, vol. 89, pp. 60–76.

    Article  CAS  Google Scholar 

  23. Eaton, P., Fernandes, J., Pereira, E., Pintado, M., and Malcata, F.X., Ultramicroscopy, 2008, vol. 108, no. 10, pp. 1128–1134.

    Article  CAS  Google Scholar 

  24. Eaton, P., Fernandes, J., Pereira, E., Pintado, M., and Malcata, F.X., Ultramicroscopy, 2009, vol. 109, no. 8, pp. 854–860.

    Article  Google Scholar 

  25. Deupree, S. and Schoenfisch, M., Acta Biomater., 2009, vol. 5, no. 5, pp. 1405–1415.

    Article  CAS  Google Scholar 

  26. Yang, X., Yang, W., Wang, Q., Li, H., Wang, K., Yang, L., and Liu, W., Talanta, 2010, vol. 81, no. 4–5, pp. 1508–1512.

    Article  CAS  Google Scholar 

  27. da Silva, A.Jr. and Teschke, O., Biochim. Biophys. Acta, 2003, vol. 1643, no., pp. 95–103.

  28. Li, A., Lee, P., Ho, B., Ding, J., and Lim, C., Biochim. Biophys. Acta, 2007, vol. 1768, no. 3, pp. 411–418.

    Article  CAS  Google Scholar 

  29. Mecke, A., Lee, D., Ramamoorthy, A., Orr, B., and Holl, M.B., Biophys. J., 2005, vol. 89, no. 6, pp. 4043–4050.

    Article  CAS  Google Scholar 

  30. Rossetto, G., Bergese, P., Colombi, P., Depero, L., Giuliani, A., Nicoletto, S., and Pirri, G., Nanomedicine, 2007, vol. 3, no. 3, pp. 198–207.

    Article  CAS  Google Scholar 

  31. Yaraksa, N., Anunthawan, T., Theansungnoen, T., Daduang, S., Araki, T., Dhiravisit, A., and Thammasirirak, S., J. Antibiot., 2014, vol. 67, no. 3, pp. 205–212.

    Article  CAS  Google Scholar 

  32. Bahar, A.A. and Ren, D., Pharmaceuticals, 2013, vol. 6, no. 12, pp. 1543–1575.

    Article  Google Scholar 

  33. Mularski, A., Wilksch, J., Wang, H., Hossain, M., Wade, J., Separovic, F., et al., Langmuir, 2015, vol. 31, no. 22, pp. 6164–6171.

    Article  CAS  Google Scholar 

  34. Mularski, A., Wilksch, J., Hanssen, E., Strugnell, R., and Separovic, F., Biochim. Biophys. Acta, 2016, vol. 1858, no. 6, pp. 1091–1098.

    Article  CAS  Google Scholar 

  35. Shaw, J., Epand, R., Hsu, J., Mo, G., Epand, R., and Yip, C., J. Struct. Biol., 2008, vol. 162, no. 1, pp. 121–138.

    Article  CAS  Google Scholar 

  36. Yamashita, H., Taoka, A., Uchihashi, T., Asano, T., Ando, T., and Fukumori, Y., J. Mol. Biol., 2012, vol. 422, no. 2, pp. 300–309.

    Article  CAS  Google Scholar 

  37. Hartmann, M., Berditsch, M., Hawecker, J., Ardakani, M. F., Gerthsen, D., and Ulrich, A.S., Antimicrob. Agents Chemother., 2010, vol. 54, no. 8, pp. 3132–3142.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Additionally, we would like to thank the Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Thailand as well as the School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Japan for providing essential laboratory facilities.

Moreover, we would like to thank Mr. Anuchit Ruangvittayanon and Dr. Worawikunya Kiatponglarp for the AFM assessment, as well as the Synchrotron Light Research Institute (Public Organization), Thailand, for providing access to the AFM equipment.

Funding

This work was financially supported by the Research and Researchers for Industries (RRI), the Thailand Research Fund, and Sriracha Moda Co., Ltd., Chon Buri, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Klaynongsruang.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theansungnoen, T., Jangpromma, N., Anwised, P. et al. Membranolytic Effects of KT2 on Gram-Negative Escherichia coli Evaluated by Atomic Force Microscopy. Appl Biochem Microbiol 55, 495–505 (2019). https://doi.org/10.1134/S0003683819050144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819050144

Keywords:

Navigation