Skip to main content
Log in

Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type in a Rectangular Domain

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The inverse problem of determining the solution and the kernel of the integral term in an inhomogeneous two-dimensional integrodifferential wave equation in a rectangular domain is considered. First, the uniqueness of the solution of the direct problem is established using the completeness of the eigenfunction system of the corresponding homogeneous Dirichlet problem for the two-dimensional Laplace operator, and the existence of a solution of the direct problem is proved. Using additional information about the solution of the direct problem, we obtain a Volterra integral equation of the second kind for the kernel of the integral term. The existence and uniqueness of a solution of this equation is proved by the contraction mapping method in the space of continuous functions with a weighted norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Hasanov and V. G. Romanov, Introduction to Inverse Problems for Differential Equations (Springer, Cham, 2017).

    Book  MATH  Google Scholar 

  2. V. Isakov, Inverse Problems for Partial Differential Equations, in Appl. Math. Sci. (Springer, New York, 2006), Vol. 127.

    MATH  Google Scholar 

  3. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, in Inverse and Ill-posed Probl. Ser. (de Gruyter, Berlin, 2007), Vol. 52.

    Book  MATH  Google Scholar 

  4. A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, in Appl. Math. Sci. (Springer, Cham, 2021), Vol. 120.

    MATH  Google Scholar 

  5. D. Lesnic, Inverse Problems with Aaplications in Science and Engineering (CRC Press, Boca Raton, FL, 2022).

    MATH  Google Scholar 

  6. S. I. Kabanikhin, Inverse and Ill-Posed Problems (Sibirsk. Nauchn. Izd., Novosibirsk, 2009) [in Russian].

    Google Scholar 

  7. A. Lorenzi and E. Sinestrari, “Stability results for a partial integrodifferential inverse problem,” in Volterra Integrodifferential Equations in Banach Spaces and Applications (Trento, 1987), Pitman Res. Notes Math. Ser., (Longman, Harlow, 1989), Vol. 190, pp. 271–294.

    Google Scholar 

  8. A. Lorenzi and E. Paparoni, “Direct and inverse problems in the theory of materials with memory,” Rend. Sem. Mat. Univ. Padova 87, 105–138 (1992).

    MathSciNet  MATH  Google Scholar 

  9. A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation,” Nonlinear Anal. 22 (1), 21–44 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  10. Zh. Sh. Safarov and D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics,” Differ. Equ. 54 (1), 134–142 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Sh. Safarov, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics,” J. Sib. Fed. Univ. Math. Phys. 11 (6), 753–763 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. G. Romanov, “On the determination of the coefficients in the viscoelasticity equations,” Siberian Math. J. 55 (3), 503–510 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. K. Durdiev and Zh. Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain,” Math. Notes 97 (6), 867–877 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. Zh. D. Totieva and D. K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation,” Math. Notes 103 (1), 118–132 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. K. Durdiev and Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations,” Math. Methods Appl. Sci. 41 (17), 8019–8032 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Guidetti, “Reconstruction of a convolution kernel in a parabolic problem with a memory term in the boundary conditions,” in Bruno Pini Mathematical Analysis Seminar, Bruno Pini Math. Anal. Semin. (Univ. Bologna, Bologna, 2013), Vol. 4, pp. 47–55.

    Google Scholar 

  17. C. Cavaterra and D. Guidetti, “Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term,” Ann. Mat. Pura Appl. (4) 193 (3), 779–816 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Janno and L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity,” Math. Methods Appl. Sci. 20 (4), 291–314 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. K. Durdiev and A. A. Rahmonov, “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium,” J. Appl. Industr. Math. 14 (2), 281–295 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. K. Durdiev and J. Sh. Safarov, “2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity,” Sib. Zh. Ind. Mat. 25 (1), 14–38 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  21. D. K. Durdiev and A. A. Rahmonov, “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium,” J. Appl. Industr. Math. 14 (2), 281–295 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. L. Karchevsky and A. G. Fatianov, “Numerical solution of the inverse problem for a system of elasticity with the aftereffect for a vertically inhomogeneous medium,” Sib. Zh. Vychisl. Mat. 4 (3), 259–268 (2001).

    Google Scholar 

  23. U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory,” Sib. Èlektron. Mat. Izv. 17, 179–189 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect,” Eurasian J. Math. Comp. Appl. 8 (2), 4–16 (2020).

    Google Scholar 

  25. K. B. Sabitov and A. R. Zainullov, “Inverse problems for a two-dimensional heat equation with unknown right-hand side,” Russian Math. (Iz. VUZ) 65 (3), 75–88 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sh. Safarov.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 244–259 https://doi.org/10.4213/mzm13686.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durdiev, D.K., Safarov, J.S. Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type in a Rectangular Domain. Math Notes 114, 199–211 (2023). https://doi.org/10.1134/S0001434623070210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623070210

Keywords

Navigation