Skip to main content
Log in

Analysis of Long-Term Measurements of Tropospheric Ozone at the St. Petersburg State University Observational Site in Peterhof

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Tropospheric ozone (TO) is one of the major greenhouse gases and a toxic air pollutant. It plays a key role in various chemical and photochemical processes in the troposphere. Ozone concentrations, both at the surface level and in the free troposphere, are measured by various local and remote-sensing methods. The St. Petersburg State University observational site in Peterhof (NDACC site St. Petersburg) is equipped with a Bruker IFS 125HR Fourier spectrometer used for TO measurements and the Thermo Scientific Model 49i gas analyzer for monitoring surface ozone concentrations (SOCs). The temporal variability of TO in the 0–8 km layer for the period from April 2009 to October 2022 and of SOCs for the period from 2013 to 2021 has been analyzed. The seasonal cycle of TO and SOCs is similar to that of total ozone columns, but it is shifted in time by about 1 and 1.5 months, respectively. The maximal variation of TO from the average value for the period falls on the first half of April ~+16%; a minimum of about –(12–14)% is observed from mid-October to the end of December. In the middle of summer, there is also a slight increase in the TO variation at the level of +(7–8)%. A statistically significant decrease in the TO content by 0.34 ± 0.22% per year was also obtained. A comparison of hourly averaged data on TO with synchronized data of SOC measurements revealed an increase in the correlation coefficient (CC) (up to 0.5 or more) between the two values 3–4 h after local noon in the warm season, accompanied by an increase in SOCs. The increase in correlations is in good agreement with the increase in the height of the planetary boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Antokhin, P.N. and Belan, B.D., Control of the dynamics of tropospheric ozone through the stratosphere, Atmos. Oceanic Opt., 2013, vol. 26, no. 3, pp. 207–213.

    Article  Google Scholar 

  2. Antokhin, P.N., Arshinov, M.Yu., Belan, B.D., Davydov, D.K., Zhidovkin, E.V., Ivlev, G.A., Kozlov, A.V., Kozlov, V.S., Panchenko, M.V., Penner, I.E., Pestunov, D.A., Simonenkov, D.V., Tolmachev, G.N., Fofonov, A.V., Shamanaev, V.S., and Shmargunov, V.P., Optik AN30 aircraft laboratory: 20 years of environmental research, J. Atmos. Oceanic Technol., 2012, vol. 29, no. 1, pp. 64–75.

    Article  Google Scholar 

  3. Cuesta, J., Eremenko, M., Liu, X., Dufour, G., Cai, Z., Höpfner, M., von Clarmann, T., Sellitto, P., Foret, G., Gaubert, B., Beekmann, M., Orphal, J., Chance, K., Spurr, R., and Flaud, J.-M., Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe, Atmos. Chem. Phys., 2013, vol. 13, no. 19, pp. 9675–9693.

    Article  Google Scholar 

  4. Dorokhov, V., Yushkov, V., Makshtas, A., Ivlev, G., Tereb, N., Savinykh, V., Shepelev, D., Nakajima, H., McElroy, C.T., Tarasick, D., Goutail, F., Pommereau, J.-P., and Pazmino, A., Brewer, SAOZ and ozonesonde observations in Siberia, Atmos.-Ocean, 2013, vol. 51, no. 3, pp. 14–18.

    Google Scholar 

  5. Dufour, G., Eremenko, M., Griesfeller, A., Barret, B., LeFlochmoën, E., Clerbaux, C., Hadji-Lazaro, J., Coheur, P.-F., and Hurtmans, D., Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes, Atmos. Meas. Tech., 2012, vol. 5, no. 3, pp. 611–630.

    Article  Google Scholar 

  6. Elansky, N.F., Russian studies of atmospheric ozone in 2011–2014, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 2, pp. 132–146.

    Article  Google Scholar 

  7. Elansky, N.F., Golitsyn, G.S., Crutzen, P.J., Belikov, I.B., Brenninkmeijer, C.A.M., and Skorokhod, A.I., Observations of the atmospheric composition over Russia: TROICA experiments, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 72–90.

    Article  Google Scholar 

  8. Gaudel, A., Cooper, O.R., Ancellet, G., Barret, B., Boynard, A., Burrows, J.P., Clerbaux, C., Coheur, P.-F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia, O., et al., Tropospheric ozone assessment report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elementa: Sci. Anthropocene, 2018, vol. 39, no. 6.

  9. Hase, H., Hannigan, J.W., Coffey, M.T., Goldman, A., Hoepfner, M., Jones, N.B., Rinsland, C.P. and Wood, S.W., Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements, J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 87, no. 1, pp. 25–52.

    Article  Google Scholar 

  10. Hubert, D., Heue, K.-P., Lambert, J.-C., Verhoelst, T., Allaart, M., Compernolle, S., Cullis, P.D., Dehn, A., Felix, C., Johnson, B.J., Keppens, A., Kollonige, D.E., Lerot, C., Loyola, D., Maata, M., et al., TROPOMI tropospheric ozone column data: Geophysical assessment and comparison to ozonesondes, GOME-2B and OMI, Atmos. Meas. Tech., 2021, vol. 14, no. 12, pp. 7405–7433.

    Article  Google Scholar 

  11. IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Eds., Cambridge: Cambridge University Press, 2013. Karol’, I.L., Kiselev, A.A., Genikhovich, E.L., and Chicherin, S.S., Short-lived radiatively active admixtures in the atmosphere and their role in contemporary climate changes, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2012, no. 567, pp. 5–82.

  12. Makshtas, A.P., Significant decrease in the ozone content in the Arctic atmosphere in 2016 winter, Ross. Polyarn. Issled., 2016, vol. 24, no. 2, pp. 9–10.

    Google Scholar 

  13. NDACC database. https://www-air.larc.nasa.gov/missions/ ndacc/data.html.

  14. Nerobelov, G., Timofeyev, Y., Virolainen, Y., Polyakov, A., Solomatnikova, A., Poberovskii, A., Kirner, O., Al-Subari, O., Smyshlyaev, S., and Rozanov, E., Measurements and modelling of total ozone columns near, St. Petersburg: Russia, Remote Sens., 2022, vol. 14, p. 3944.

    Article  Google Scholar 

  15. Paris, J.-D., Ciais, Ph., Nédélec, Ph., Stohl, A., Belan, B.D., Arshinov, M.Yu., Carouge, C., Golitsyn, G., and Granberg, I.G., New insights on the chemical composition of the Siberian air shed from the YAK-AEROSIB aircraft campaigns, Bull. Am. Meteorol. Soc., 2010, vol. 91, no. 5, pp. 1–17.

    Article  Google Scholar 

  16. Polyakov, A., Poberovsky, A., Makarova, M., Virolainen, Y., Timofeyev, Y., and Nikulina, A., Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019, Atmos. Meas. Tech., 2021, vol. 14, no. 8, pp. 5349–5368.

    Article  Google Scholar 

  17. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G.Y., and Solomon, S., Radiative forcing of climate change, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A., Eds., Cambridge: Cambridge University Press, 2001.

    Google Scholar 

  18. Simakina, T.E. and Kryukova, S.V., Spatial and temporal distribution of surface ozone concentration in St. Petersburg, Gidrometeorol. Ekol., 2020, no. 61, pp. 407–420.

  19. Smyshlyaev, S.P., Virolainen, Ya.A., Motsakov, M.A., Polyakov, A.V., Timofeev, Yu.M., and Poberovskii, A.V., Interannual and seasonal variations in ozone in different atmospheric layers over St. Petersburg based on observational data and numerical modeling, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 3, pp. 301–315.

    Article  Google Scholar 

  20. Tarasick, D., Galbally, I.E., Cooper, O.R., Schultz, M.G., Ancellet, G., Leblanc, T., Wallington, T.J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J.W., Garcia, O., and Foret, G., Tropospheric ozone assessment report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, Elementa: Sci. Anthropocene, 2019, vol. 39, no. 7.

  21. Timofeev, Yu.M., Polyakov, A.V., Virolainen, Ya.A., Makarova, M.V., Ionov, D.V., Poberovsky, A.V., and Imhasin, H.H., Estimates of trends of climatically important atmospheric gases near St. Petersburg, Izv., Atmos. Ocean. Phys. 2020, vol. 56, no. 1, pp. 79–84.

    Article  Google Scholar 

  22. Vigouroux, C., De Maziere, M., Demoulin, P., Servais, C., Hase, F., Blumenstock, T., Kramer, I., Schneider, M., Mellqvist, J., Strandberg, A., Velazco, V., Notholt, J., Sussmann, R., Stremme, W., Rockmann, A., et al., Evaluation of tropospheric and stratospheric ozone trends over western Europe from ground-based FTIR network observations, Atmos. Chem. Phys., 2008, vol. 8, no. 23, pp. 6865–6886.

    Article  Google Scholar 

  23. Virolainen, Ya.A., Timofeev, Yu.M., Poberovskii, A.V., et al., Evaluation of ozone content in different atmospheric layers using ground-based Fourier transform spectrometry, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 2, pp. 167–176.

    Article  Google Scholar 

  24. Virolainen, Ya.A., Timofeev, Yu.M., Poberovskii, A.V., Polyakov, A.V., and Shalamyanskii, A.M., Empirical assessment of errors in total ozone measurements with different instruments and methods, Atmos. Oceanic Opt., 2017, vol. 30, no. 4, pp. 382–388.

    Article  Google Scholar 

  25. Virolainen, Y., Polyakov, A., Timofeyev, Y., and Poberovsky, A., FTIR measurements of stratospheric gases at the St. Petersburg site, in Problems of Geocomsos-2022: Springer Proceedings in Earth and Environmental Sciences, Kosterov, A., Lyskova, E., Mironova, I., Baranov, S., and Apatenkov, S., Eds., Cham: Springer, 2023.

    Google Scholar 

  26. Whole Atmosphere Community Climate Model (WACCM) Model Output ds313.6. https://doi.org/10.5065/G643-Z138. https://rda.ucar.edu/datasets/ds313.6/#!description.

  27. World Meteorological Organization (WMO), Executive, Summary, Scientific Assessment of Ozone Depletion, 2022, GAW Rep. No. 278, Geneva: WMO, 2022.

  28. Wu, S., Mickley, L.J., Jacob, D.J., Logan, J.A., Yantosca, R.M., and Rind, D., Why are there large differences between models in global budgets of tropospheric ozone?, J. Geophys. Res., 2007, vol. 112, no. D05, 302.

    Article  Google Scholar 

  29. Young, P.J., Archibald, A.T., Bowman, K.W., Lamarque, J.-F., Naik, V., Stevenson, D.S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W.J., Dalsoren, S.B., Doherty, R.M., et al., Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 2013, vol. 13, no. 4, pp. 2063–2090.

    Article  Google Scholar 

  30. Ziemke, J.R., Chandra, S., Duncan, B.N., Froidevaux, L., Bhartia, P.K., Levelt, P.F., and Waters, J.W., Tropospheric ozone determined from aura OMI and MLS: Evaluation of measurements and comparison with the global modeling initiative’s chemical transport model, J. Geophys. Res., 2006, vol. 111, D19303.

    Article  Google Scholar 

  31. Zvyagintsev, A.M., Spatiotemporal variability of ozone in the troposphere, Doctoral (Phys.–Math.) Dissertation, Moscow, 2013.

  32. Zvyagintsev, A.M., Kuznetsova, I.N., Shalygina, I.Yu., Lezina, E.A., Lapchenko, V.A., Nikiforova, M.P., and Demin, V.I., Surface ozone research and monitoring in Russia, Tr. Gidromettsentra Rossii, 2017, no. 365, pp. 56–70.

Download references

ACKNOWLEDGMENTS

The data on the height of the boundary layer at Voeykovo station were obtained in 2015 from the website of the University of Wyoming (https://weather.uwyo.edu/ upperair/sounding.html). The authors thank M.V. Makarova at the Department of Atmospheric Physics of St. Petersburg State University for participating in a discussion of the results, as well as A.V. Poberovsky and Kh.Kh. Imhasin for providing and conducting spectroscopic measurements.

Funding

Ground-based spectroscopic measurements and direct measurements of SOCs were performed using the scientific equipment of the resource center of St. Petersburg State University Geomodel. The study was supported by the Russian Science Foundation, grant no. 23-27-00166, https://rscf.ru/ en/project/23-27-00166/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Virolainen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Ionov, D.V. & Polyakov, A.V. Analysis of Long-Term Measurements of Tropospheric Ozone at the St. Petersburg State University Observational Site in Peterhof. Izv. Atmos. Ocean. Phys. 59, 287–295 (2023). https://doi.org/10.1134/S000143382303009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382303009X

Keywords:

Navigation