Skip to main content
Log in

Features of the Intrinsic L-Band Radiation of the Gulf of Ob during the Freeze-Up Period

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This article analyzes seasonal and interannual dependences of brightness temperature in different zones of the Gulf of Ob according to data from the MIRAS radiometer (SMOS satellite). It is shown that, while the brightness temperature dynamics of the freshwater zone of the Gulf of Ob (the estuary and the central zone) is similar to that of freshwater lakes, this dynamics in the seawater zone is different. The authors explain this difference by an increase in water salinity and, consequently, an increase in radiation absorption in the lower ice layer, which is in contact with the water surface. The regularities of seasonal variations of brightness temperature in different zones of the Gulf of Ob and related ice-cover phases can be used to assess salinity and water mixing in large estuaries of the Arctic in winter based on satellite microwave radiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Akimov, D.B., Johannessen, O.M., Mitnik, L.M., and Volkov, V.A., Satellite radar signatures of fronts in the Ob and Yenisei estuaries in the Kara Sea, in Proc. IEEE Intern. Geosci. Remote Sens. Symp. (IGARSS’99) (28 June–2 July 1999, Hamburg, Germany), vol. 5, pp. 2542–2544.

  2. Andreev, O.M., Drabenko, D.V., Vinogradov, R.A., and Orlova, E.U., Influence of climate warming on the strength characteristics of ice in the Ob Bay, Led Sneg, 2019, vol. 59, no. 4, pp. 539–545.

    Google Scholar 

  3. Baban, S.J., Detecting water quality parameters in the Norfolk Broads, U.K., using Landsat imagery, Int. J. Remote Sens., 1993, vol. 14, no. 7, pp. 1247–1267.

    Article  Google Scholar 

  4. Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Oceanic Phys., 2011, vol. 47, no. 9, pp. 1007–1018.

    Article  Google Scholar 

  5. Bondur, V.G., Vorobyev, V.E., and Lukin, A.A., Satellite monitoring of the northern territories disturbed by oil production, Izv., Atmos. Oceanic Phys., 2017, vol. 53, no. 9, pp. 1007–1015.

    Article  Google Scholar 

  6. Boyarskii, D.A., Tikhonov, V.V., Kleeorin, N.I., and Mirovskii, V.G., Inclusion of scattering losses in the models of the effective permittivity of dielectric mixtures and applications to wet snow, J. Electromag. Waves Appl., 1994, vol. 8, no 11, pp. 1395–1410.

    Article  Google Scholar 

  7. Bring, A. and Destouni, G., Hydro-climatic changes and their monitoring in the Arctic: observation-model comparisons and prioritization options for monitoring development, J. Hydrol., 2013, vol. 492, pp. 273–280.

    Article  Google Scholar 

  8. humakov, M.M. and Luzhkova, K.V., Assessment of characteristics of ice cover in water areas of western part of Kara Sea and Ob-Taz region according to radar and spectral radiometric remote sensing of the Earth, Vesti Gaz. Nauki, 2013, vol. 14, no. 3, pp. 113–118

    Google Scholar 

  9. Crabeck, O., Galley, R., Delille, B., Else, B., Geilfus, N.-X., Lemes, M., Roches, M.D., Francus, P., Tison, J.-L., and Rysgaard, S., Imaging air volume fraction in sea ice using non-destructive X-ray tomography, The Cryosphere, 2016, vol. 10, no. 3, pp. 1125–1145.

    Article  Google Scholar 

  10. Cuffey, K.M. and Paterson, W.S.B., The Physics of Glaciers, Amsterdam: Elsevier, 2010.

    Google Scholar 

  11. Diansky, N.A., Fomin, V.V., Gruzinov, V.M., Kabatchenko, I.I., and Litvinenko, G.I., Assessment of effect of the approach channel to the port of Sabetta to changes in hydrological conditions of the Gulf of Ob using numerical modeling, Arktika: Ekol., Ekon., 2015, vol. 19, no. 3, pp. 18–29.

    Google Scholar 

  12. Doronin, Yu.P. and Kheisin, D.E., Morskoi led (Sea ice). Leningrad: Gidrometeoizdat, 1975, p. 318.

  13. Drits, A.V., Arashkevich, E.G., Nedospasov, A.A., Amelina, A.B., and Flint, M.V., Structural and functional characteristics of zooplankton in the Ob estuary and adjacent shelf areas of the Kara Sea in summer, Oceanology, 2019, vol. 59, no. 3, pp. 347–357.

    Article  Google Scholar 

  14. Encyclopedia of Snow, Ice and Glaciers, Singh V.P., Singh P., and Haritashya, U.K., Eds., Dordrecht: Springer, 2011.

    Google Scholar 

  15. Frantz, C.M., Light, B., Farley, S.M., Carpenter, S., Lieblappen, R., Courville, Z., Orellana, M.V., and Junge, K., Physical and optical characteristics of heavily melted “rotten” Arctic sea ice, The Cryosphere, 2019, vol. 13, no. 3, pp. 775–793.

    Article  Google Scholar 

  16. Goldberg, V.M., Zverev, V.P., Arbuzov, A.I., Kazenov, S.M., Kovalevskii, Yu.V., and Putilina, V.S., Tekhnogennoe zagryaznenie prirodnykh vod uglevodorodami i ego ekologicheskie posledstviya (Technogenic Pollution of Natural Waters by Hydrocarbons and its Ecological Consequences), Moscow: Nauka, 2001, p. 125.

  17. Gordeev, V.V., Trace elements in water, suspension and bottom sediments of the Ob Bay, the Yenisei Bay and the Lena Delta and adjacent areas of the Kara sea and the Laptev sea), in Sistema morya Laptevykh i prilegayushchikh morey Arktiki. Sovremennoe sostoyanie i istoriya razvitiya (System of the Laptev Sea and the Adjacent Arctic Seas. Current State and History of Development), Moscow: Mos. Gos. Univ., 2009, pp. 202–225

  18. Gutierrez, A., Castro, R., and Vieira, P., SMOS L1 Processor L1c Data Processing Model. DEIMOS Engenharia. Lisboa, Portugal. 2014. https://earth.esa.int/documents/ 10174/1854456/SMOS_L1c-Data-Processing-Models.

  19. Hall, D.K. and Martinec, J., Remote Sensing of Ice and Snow, London: Chapman and Hall, 1985.

    Book  Google Scholar 

  20. Handbook of Snow, Gray, D.M. and Male, D.H., Eds., New Jersey: Blackburn, 1981.

    Google Scholar 

  21. Hufford, G., A model for the complex permittivity of ice at frequencies below 1 THz, Int. J. Infrared Millimeter Waves, 1991, vol. 12, no. 7, pp. 677–682.

    Article  Google Scholar 

  22. Ilyin, G.V., Hydrological conditions of the Ob bay as new area of maritime wildlife management in the Russian Arctic, Nauka Yuga Rossii, 2018, vol. 14, no. 2, pp. 20–32.

    Google Scholar 

  23. Johannessen, O.M., Aleksandrov, V.Yu., Frolov, I.E., Sandven, S., Pettersson, L.P., Bobylev, L.P., Kloster, K., Smirnov, V.G., Mironov, E.U., and Babich, N.G., Remote Sensing of Sea Ice in the Northern Sea Route. Studies and Application, Berlin: Springer, 2007.

    Google Scholar 

  24. Karlsson, J.M., Jaramillo, F., and Destouni, G., Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas, J. Hydrol., 2015, vol. 529, pp. 134–145.

    Article  Google Scholar 

  25. Khvostov, I.V., Romanov, A.N., Tikhonov, V.V., and Sharkov, E.A., Some features of L-band thermal radiation of freshwater bodies with ice cover, Sovr. Probl. Dist. Zond. Zemli Kosm., 2017, vol. 14, no. 4, pp. 149–154.

    Article  Google Scholar 

  26. Kotlyakov, V.M., Izbrannye sochineniya. Kniga 1. Glyatsiologiya Antarktidy (Selected Works. Book 1. Glaciology of the Antarctic), Moscow: Nauka, 2000.

  27. Kotlyakov, V.M., Izbrannye sochineniya. Kniga 2. Snezhnyi pokrov i ledniki Zemli (Selected Works. Book 2. Snow Cover and Glaciers of the Earth), Moscow: Nauka, 2004.

  28. Kravtsova, V.I. and Cherepanova, E.V., Dynamics of the Yenisei and Pur river deltas, Water Resour., 2003, vol. 30, no. 3, pp. 275–282.

    Article  Google Scholar 

  29. Kuenzer, C., Heimhuber, V., Huth, J., and Dech, S., Remote sensing for the quantification of land surface dynamics in large river delta regions—a review, Remote Sens., 1987, vol. 11, no. (17). https://doi.org/10.3390/rs11171985

  30. Kuzmin, P.P., Fizicheskie svoistva snezhnogo pokrova (The Physical Properties of Snow Cover). Leningrad: Gidrometeoizdat, 1957.

  31. Lapin, S.A., Hydrological characterization of the Ob Inlet in the summer and autumn seasons, Oceanology, 2011, vol. 51, no. 6, pp. 925–934.

    Article  Google Scholar 

  32. Lapin, S.A., Spatio-temporal variability of hydrological and hydrochemical characteristics of the Ob Bay as a basis for evaluating its bio-productivity, Candidate’s Dissertation in Geographical Sciences, Moscow: Moscow State University, 2012, p. 25.

  33. Lapin, S.A., Specific features of formation of the high-productivity zones in the Ob Inlet, Tr. Vseross. Nauch.-Issled. Inst. Ryb. Khoz. Okeanogr., 2014, vol. 152, pp. 146–154.

    Google Scholar 

  34. Li, Z., Zhao, J., Su, J., Li, C., Cheng, B., Hui, F., Yang, Q., and Shi, L., Spatial and temporal variations in the extent and thickness of Arctic landfast ice, Remote Sens., 2020, vol. 12, no. 1, p. 20.

    Google Scholar 

  35. Magritskii, D.V., Seasonal changes in the inflow of fresh water to the marginal seas, in Geoekologicheskoe sostoyanie arkticheskogo poberezh’ya Rossii i bezopasnost’ prirodopol’zovaniya (Geoecological condition of the Arctic coast of Russia and safety of nature management), Alekseevskii, N.I., Ed., Moscow: GEOS, 2007.

  36. Melentyev, V., Bobylev, L., Pettersson, L., and Sandven, S., Winter hydrology and ice regime of the Ob–Yenisey estuaries: results of satellite SAR comprehensive studies, in Proc. 31st Int. Symp. Remote Sensing of Environment (ISRSE) (20–24 June 2005, St. Petersburg, Russia).

  37. Melentyev, V.V., Johessen, O.M., Sandven, S., and Pettersson, L.H., Ice regime study for the Ob–Yenisey Estuaries using ERS SAR data, in Proc. IEEE Intern. Geosci. Remote Sens. Symp. (IGARSS’99) (28 June–2 July 1999, Hamburg, Germany), vol. 2, pp. 1037–1039.

  38. Mikhailov, V.N., Gidrologiya ust’ev rek (Hydrology of River Mouths), Moscow: Mos. Gos. Univ., 1998.

  39. Mikhailova, M.V. and Mikhailov, V.N., Current state and prospects of river estuaries hydrology, in Izbrannye trudy Instituta vodnykh problem RAN: 1967–2017 (Selected Works of the Institute of Water Problems of the Russian Academy of Sciences: 1967–2017, Gelfan, A.N., Ed., Moscow: Inst. Vodn. Probl. Ross. Akad. Nauk, 2017, vol. 2, pp. 252–280.

  40. Morskoi led. Sbor i analiz dannykh nablyudenii, fizicheskie svojstva i prognozirovanie ledovykh uslovii (spravochnoe posobie) (Sea Ice. Collection and Analysis of Observational Data, Physical Properties and Forecasting of Ice Conditions (Reference Manual)) Frolov, I.E. and Gavrilo, V.P., Eds., St. Petersburg: Gidrometeoizdat, 1997.

    Google Scholar 

  41. Muzylev, E.Ya. and Kurbatova, I.E., Using remote sensing data for hydrological research in the IWP RAS: retrospective and current achievements) in Izbrannye trudy Instituta vodnykh problem RAN: 1967–2017 (Selected Works of the Institute of Water Problems of the Russian Academy of Sciences: 1967–2017), Gelfan, A.N., Ed., Moscow: Inst. Vodn. Probl. Ross. Akad. Nauk, 2017, vol. 2, pp. 281–312.

    Google Scholar 

  42. Ray, R., Mandal, S., and Dhara, A., Environmental monitoring of estuaries: estimating and mapping various environmental indicators in Matla estuarine complex, using Landsat TM digital data, Int. J. Geomatics Geosci., 2013, vol. 3, no. 3, pp. 570–581.

    Google Scholar 

  43. Rees, W.G., Physical Principles of Remote Sensing, Cambridge: Cambridge University Press, 2013.

    Google Scholar 

  44. Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management, Yang, X., Ed., Berlin: Springer, 2009.

    Google Scholar 

  45. Romanov, A.N., Remote assessment of the degree of soil degradation from radiation properties of soils, Euras. Soil Sci., 2009, vol. 42, no. 3, pp. 328–335.

    Google Scholar 

  46. Romanov, A.N., Khvostov, I.V., Kovalevskaya, N.M., Sinitskii, A.I., and Kolesnikov, R.A., First results of cosmic microwave monitoring of permafrost and tundra vegetation in the territory of Gydan Peninsula, Nauch. Bull. Yam-alo-Nenets. Avton. Okr., 2016, no. 4, pp. 68–76.

  47. Romanov, A.N., Khvostov, I.V., Ulanov, P.N., Kovalevskaya, N.M., Kirillov, V.V., Plutalova, T.G., Kobelev, V.O., Pechkin, A.S., Sinitskiy, A.I., Sysoeva, T.G., and Khvorova, L.A., Kosmicheskii monitoring arkticheskikh i subarkticheskikh territorii Yamalo-Nenetskogo avtonomnogo okruga (Space Monitoring of the Arctic and Subarctic Territories of the Yamal-Nenets Autonomous District), Barnaul: OOO Pyat’ Plyus, 2018.

  48. Romanov, A.N., Khvostov, I.V., Tikhonov, V.V., Boyarskii, D.A., Sevast’yanova, L.Yu., Ulanov, P.N., and Sharkov, E.A., Radiothermal regime of the deltas of the northern rivers (on the example of the Severnaya Dvina), as an indicator of hydrological and climatic changes in the arctic), in Coll. Mater. All-Russian Conf. with Int. Participation, II Yudakhin Readings. Arkhangelsk: FCIARctic, 2019, pp. 105–109.

  49. Saf’yanov, G.A., Estuarii (Estuaries), Moscow: Mysl’, 1987.

    Google Scholar 

  50. Sahr, K., White, D., and Kimerling, A.J., Geodesic discrete global grid system, Cartogr. Geogr. Inf. Sci., 2003, vol. 30, no. 2, pp. 121–134.

    Article  Google Scholar 

  51. Sharkov, E.A., Radioteplovoe distantsionnoe zondirovanie Zemli: fizicheskie osnovy (Radiothermal Remote Sensing of the Earth: Physical Foundations). M.: IKI RAN, 2014.

  52. Sharkov, E.A., Passive Microwave Remote Sensing of the Earth: Physical Foundations, Berlin: Springer/PRAXIS, 2003.

    Google Scholar 

  53. Tedesco, M., Remote Sensing of the Cryosphere, Oxford: John Wiley and Sons, 2015.

    Book  Google Scholar 

  54. Tikhonov, V.V., Boyarskii, D.A., Sharkov, E.A., Raev, M.D., Repina, I.A., Ivanov, V.V., Alexeeva, T.A., Komarova, N.Yu., Microwave model of radiation from the multilayer “ocean -atmosphere” system for remote sensing studies of the polar regions, Progr. Electromagn. Res. B., 2014, vol. 59, pp. 123–133.

    Article  Google Scholar 

  55. Tikhonov, V., Khvostov, I., Romanov, A., and Sharkov, E., Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data, The Cryosphere, 2018, vol. 12, no. 8, pp. 2727–2740.

    Article  Google Scholar 

  56. Tikhonov, V.V., Khvostov, I.V., Romanov, A.N., and Sharkov, E.A., Analysis of changes in the ice cover of freshwater lakes by SMOS data, Izv., Atmos. Oceanic Phys., 2018, vol. 54, no. 9, pp. 1135–1140.

    Article  Google Scholar 

  57. Treatise on Estuarine and Coastal Science, Wolanski, E. and McLusky, D., Eds., London: Elsevier, 2011, vol. 12, p. 4590.

  58. Voitkovskii, K.F., Osnovyi glyaciologii (Fundamentals of glaciology). M.: Nauka, 1999.

  59. Wolanski, E., Day, J.W., Elliott, M., and Ramachandran, R., Coasts and Estuaries. The Future, Amsterdam: Elsevier, 2019.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Y.I. Prilepskii, head of the Novy Port HMS, Northern Department, Federal Service for Hydrometeorology and Environmental Monitoring, for providing data on the characteristics of ice and snow cover in the Gulf of Ob.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-05-00198a (V.V. Tikhonov, I.V. Khvostov, A.N. Romanov, and A.I. Sinitskiy). Modeling and analysis of the intrinsic microwave radiation of the Arctic sea ice was carried out within the Monitoring program, project no. 01.20.0.2.00164 (E.A. Sharkov, D.A. Boyarskii, and N.Yu. Komarova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tikhonov.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, V.V., Khvostov, I.V., Romanov, A.N. et al. Features of the Intrinsic L-Band Radiation of the Gulf of Ob during the Freeze-Up Period. Izv. Atmos. Ocean. Phys. 56, 936–949 (2020). https://doi.org/10.1134/S0001433820090236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820090236

Keywords:

Navigation