Skip to main content
Log in

Web-Oriented Software System for Analysis of Spatial Geophysical Data Using Geoinformatics Methods

  • METHODS AND MEANS OF SATELLITE DATA PROCESSING AND INTERPRETATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This work is devoted to the description of a software system that was developed using modern network and geoinformation technologies for analysis of geospatial data. The system includes a client web application, which provides access to mapping services and geoprocessing services published on the GIS server. The approach, which forms the basis of the presented system, allows researchers to access an extensive geodatabase for remote sensing and Earth sciences, as well as a set of tools for their comprehensive analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agayan, S.M. and Solov’yev, A.A., Isolation of dense regions in metric spaces based oncrystallization, Syst. Res. Inf. Technol., 2004, no. 2, pp. 7–23.

  2. Agayan, S.M., Bogoutdinov, Sh.R., and Dobrovolsky, M.N., Discrete perfect sets and their application in cluster analysis, Cybern. Syst. Anal., 2014, vol. 50, no. 2, pp. 176–190. doi 10.1007/s10559-014-9605-9

    Article  Google Scholar 

  3. Agayan, S.M., Bogoutdinov, Sh.R., Soloviev, A., and Sidorov, R., The study of time series using the DMA methods and geophysical applications, Data Sci. J., 2016, vol. 15, no. 16, pp. 1–21. doi 10.5334/dsj-2016-016

    Article  Google Scholar 

  4. Barthelmes, F. and Köhler, W., International Centre for Global Earth Models (ICGEM), J. Geod., 2016, vol. 90, no. 10, pp. 907–1205. doi 10.1007/s00190-016-0948-z

    Article  Google Scholar 

  5. Beriozko, A., Lebedev, A., Soloviev, A., Krasnoperov, R., and Rybkina, A., Geoinformation system with algorithmic shell as a new tool for earth sciences, Russ. J. Earth. Sci., 2011, vol. 12, ES1001. doi 10.2205/2011ES000501

    Article  Google Scholar 

  6. Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 840–852.

    Article  Google Scholar 

  7. Bondur, V.G. and Zverev, A.T., A method of earthquake forecast based on the lineament analysis of satellite images, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 561–567.

    Google Scholar 

  8. Bondur, V.G., Zverev, A.T., and Gaponova, Ye.V., Lineament analysis of space images of seismically dangerous territories of Russia, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 4, pp. 213–222.

    Google Scholar 

  9. CbTree, CheckBox Tree. https://github.com/pjekel/cbtree.

  10. Earth Online, ESA Earth Observation Data. https://earth. esa.int/.

  11. Earth Explorer, USGS. https://earthexplorer.usgs.gov.

  12. ESRI Shapefile Technical Description, Redlands, California, USA: ESRI, 1998.

  13. Förste, C., Bruinsma, S.L., Shako, R., et al., A new release of EIGEN-6: The latest combined global gravity field model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ, Potsdam and GRGS Toulouse, Geophys. Res. Abstr., 2012, vol. 14, EGU2012-2821.

    Google Scholar 

  14. Förste, C., Bruinsma, S.L., Abrikosov, O., Lemoine, J.-M., Marty, JeanC., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R., EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, 2014. doi 10.5880/icgem.2015.1

    Google Scholar 

  15. Fu, P., Getting to Know Web GIS, Redlands, California, USA: ESRI Press, 2016.

    Google Scholar 

  16. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., and Solov’yev, A.A., Discrete mathematical analysis and geological and geophysical applications, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle, 2010, vol. 16, no. 2, pp. 109–125.

    Google Scholar 

  17. Gvishiani, A.D., Dzeboev, B.A., and Agayan, S.M., FCaZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts, Izv., Phys. Solid Earth, 2016, vol. 52, no. 4, pp. 461–491.

    Article  Google Scholar 

  18. Kosmosnimki (Space Imagery). http://kosmosnimki.ru/.

  19. Krasnoperov, R.I. and Soloviev, A.A., Analytical geoinformation system for integrated geological–geophysical research in the territory of Russia, Gorn. Zh., 2015, vol. 10, pp. 89–93. doi 10.17580/gzh.2015.10.16

    Article  Google Scholar 

  20. Krasnoperov, R.I., Solov’yev, A.A., Nikolov, B.P., Zharkikh, Yu.I., and Grudnev, A.A., Interactive web application for the integrated study of spatial information on Earth sciences using the geodatabase of the GC RAS, Issled. Geoinf., 2016, vol. 4, no. 1. doi 10.2205/2016BS039

  21. Lesur, V., Hamoudi, M., Choi, Y., Dyment, J., and Thebault, E., Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth, Planets Space, 2016, vol. 68, no. 27, pp. 1–13. doi 10.1186/s40623-016-0404-6

    Article  Google Scholar 

  22. Loshkarev, P.A., Tokhiyan, O.O., Kurlykov, A.M., Koshkin, K.V., and Gladkov, A.P., Development of ETRIS RS with application of cloud technologies, Geomatika, 2013, no. 4.

  23. Lutz, M., Learning Python, Sebastopol, California, USA: O’Reilly, 2009.

    Google Scholar 

  24. Mitchell, A., The ESRI Guide to GIS Analysis, vol. 2, Redlands, California, USA: ESRI, 2005.

    Google Scholar 

  25. Nikolov, B.P., Zharkikh, J.I., Soloviev, A.A., Krasnoperov, R.I., and Agayan, S.M., Integration of data mining methods for earth science data analysis in GIS environment, Russ. J. Earth. Sci., 2015, vol. 15, ES4004. doi 10.2205/2015ES000559

    Article  Google Scholar 

  26. Roberts, F.S., What is Big Data and how has it changed?, in Book of Abstracts of the International Conference ‘Data Intensive System Analysis for Geohazard Studies’, Kedrov, E., Ed., Sochi, 2016, BS4002.

  27. Roscosmos Geoportal, Satellite Images Service. http:// gptl.ru/.

  28. Ross, T.J., Fuzzy Logic with Engineering Application, Chichester: Wiley, 2004.

    Google Scholar 

  29. Russell, M., Dojo: The Definitive Guide, Sebastopol, California, USA: O’Reilly, 2008.

    Google Scholar 

  30. Science International: Open Data in a Big Data World, Paris: International Council for Science (ICSU), International Social Science Council (ISSC), The World Academy of Sciences (TWAS), Inter Academy Partnership (IAP), 2015.

  31. Shako, R., Förste, C., Abrikosov, O., Bruinsma, S., Marty, J., Lemoine, J., Flechtner, F., Neumayer, H., and Dahle, C., EIGEN-6C: A high-resolution global gravity combination model including GOCE data, in Observation of the System Earth from Space—CHAMP, GRACE, GOCE and Future Missions, Flechtner, F., Sneeuw, N., and Schuh, W.-D., Eds., 2013, pp. 155–161. doi 10.1007/978-3-642-32135-1_20

    Google Scholar 

  32. Soloviev, A.A., Shur, D.Yu., Gvishiani, A.D., Mikhailov, V.O., and Tikhotskii, S.A., Determination of the magnetic moment vector using cluster analysis of the local linear pseudoinversion of ΔT anomalies, Dokl. Earth Sci., 2005, vol. 404, no. 7, pp. 1068–1071.

    Google Scholar 

  33. Soloviev, A.A., Zharkikh, J.I., Krasnoperov, R.I., Nikolov, B.P., and Agayan, S.M., GIS-oriented solutions for advanced clustering analysis of geoscience data using ArcGIS platform, Russ. J. Earth. Sci., 2016, vol. 16, ES6004. doi 10.2205/2016ES000587

    Article  Google Scholar 

  34. Soloviev, A.A., Krasnoperov, R.I., Zharkikh, Yu.I., and Nikolov, B.P., “Cluster Analysis” toolbox for operating in the ArcGIS environment, State Registration of Computer Programs no. 2017617020, 2017.

  35. Swenson, S.C., GRACE monthly land water mass grids NETCDF Release 5.0, Pasadena, California, USA, 2012. doi 10.5067/TELND-NC005

  36. Tkachev, A.V., Bulov, S.V., Rundkvist, D.V., Pokhno, S.A., Vishnevskaya, N.A., and Nikonov, R.A., Web-GIS “The largest deposits of the world”, Geoinform, 2015, no. 1, pp. 47–59.

  37. Tokhiyan, O.O. and Koshkin, K.V., Experience in the development and operation of the geoposal of Roscosmos, Geomatika, 2011, no. 2.

  38. Tsendbazar, N., de Bruin, S., and Herold, M., Assessing global land cover reference datasets for different user communities, ISPRS J. Photogramm. Remote Sens., 2015, vol. 103, pp. 93–114. doi 10.1016/j.isprsjprs.2014.02.008

    Article  Google Scholar 

  39. Zadeh, L.A., Fuzzy sets, Inf. Control, 1965, vol. 8, no. 3, pp. 338–353. doi 10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  40. Zandbergen, P.A., Python Scripting for ArcGIS, Redlands, California, USA: ESRI, 2014.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as part of the Program of Fundamental Research of the Presidium of the Russian Academy of Sciences no. 48 “Deposits of Strategic and High-tech Metals in the Russian Federation: Location Patterns, Formation Conditions, and Innovative Technologies of Targeting and Development”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Nikolov.

Additional information

Translated by A. Dunaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, A.A., Krasnoperov, R.I., Nikolov, B.P. et al. Web-Oriented Software System for Analysis of Spatial Geophysical Data Using Geoinformatics Methods. Izv. Atmos. Ocean. Phys. 54, 1312–1319 (2018). https://doi.org/10.1134/S0001433818090360

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818090360

Keywords:

Navigation