Skip to main content
Log in

Study of the Piezoelectric Properties of Nitrogen-Doped Carbon Nanotubes for the Development of Energy-Efficient Nanogenerators

  • NANOSTRUCTURES AND NANOTUBES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The results of experimental studies of the influence of the ratio of process-gas flows of acetylene and ammonia on the value of the piezoelectric strain coefficient of nitrogen-doped carbon nanotubes (N‑CNTs) are presented. It is found that the value of the piezoelectric strain coefficient of N-CNTs increases from 10.9 to 20.6 pm/V when the flow ratio increases from 1 : 1 to 1 : 6, and then decreases to 18.4 pm/V when the ratio increases to 1 : 10. It is shown that this nonlinear dependence is caused by a simultaneous change in the concentration of the nitrogen dopant and the geometric parameters of the nanotube. The obtained results can be used in the development of energy-efficient piezoelectric nanogenerators based on N-CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Z. L. Wang, Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272

  2. N. Gogurla and S. Kim, Adv. Energy Mater. 11, 2100801 (2021). https://doi.org/10.1002/aenm.202100801

  3. S. Das Mahapatra, P. C. Mohapatra, A. I. Aria, et al., Adv. Sci. 8, 2100864 (2021). https://doi.org/10.1002/advs.202100864

  4. Y. Hu and Z. L. Wang, Nano Energy 14, 3 (2014). https://doi.org/10.1016/j.nanoen.2014.11.038

    Article  CAS  Google Scholar 

  5. Z. L. Wang, Nano Today 5, 540 (2010). https://doi.org/10.1016/j.nantod.2010.10.008

    Article  CAS  Google Scholar 

  6. P. Rana, C. Gupta, A. Chandel, and M. Shandilya, AIP Conf. Proc. 2357, 050006 (2022). https://doi.org/10.1063/5.0080977

  7. A. Waseem, M. A. Johar, M. A. Hassan, et al., J. Alloys Compd. 872, 159661 (2021). https://doi.org/10.1016/j.jallcom.2021.159661

  8. X. Wang, X. Gao, M. Li, et al., Ceram. Int. 47, 25416 (2021). https://doi.org/10.1016/j.ceramint.2021.05.264

    Article  CAS  Google Scholar 

  9. S. You, L. Zhang, J. Gui, et al., Micromachines 10, 302 (2019). https://doi.org/10.3390/mi10050302

    Article  PubMed  PubMed Central  Google Scholar 

  10. M. V. Il’ina, O. I. Il’in, A. V. Guryanov, et al., J. Mater. Chem. C 9, 6014 (2021). https://doi.org/10.1039/d1tc00356a

    Article  CAS  Google Scholar 

  11. M. Il’ina, O. Il’in, O. Osotova, et al., Carbon (New York) 190, 348 (2022). https://doi.org/10.1016/j.carbon.2022.01.014

    Article  CAS  Google Scholar 

  12. M. V. Il’ina, O. I. Soboleva, N. N. Rudyk, et al., J. Adv. Dielectr. 12, 2241001 (2022). https://doi.org/10.1142/S2010135X22410016

  13. M. V. Il’ina, O. I. Soboleva, S. A. Khubezov, et al., J. Low Power Electron. Appl. 13, 11 (2023). https://doi.org/10.3390/jlpea13010011

    Article  Google Scholar 

  14. M. V. Il’ina, O. I. Il’in, N. N. Rudyk, et al., Nanomaterials 11, 2912 (2021). https://doi.org/10.3390/nano11112912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. N. Rudyk, O. I. Il’in, M. V. Il’ina, et al., Tech. Phys. 67, 34 (2022). https://doi.org/10.1134/S1063784222010121

    Article  CAS  Google Scholar 

  16. M. V. Il’ina, O. I. Osotova, N. N. Rudyk, et al., Diam. Relat. Mater. 126, 109069 (2022). https://doi.org/10.1016/j.diamond.2022.109069

  17. S. Boncel, S. W. Pattinson, V. Geiser, et al., Beilstein J. Nanotechnol. 5, 219 (2014). https://doi.org/10.3762/bjnano.5.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. V. Eckert, A. Leonhardt, S. Hampel, and B. Buchner, Diam. Relat. Mater. 86, 8 (2018). https://doi.org/10.1016/j.diamond.2018.04.004

    Article  CAS  ADS  Google Scholar 

  19. S. I. Kundalwal, S. A. Meguid, and G. J. Weng, Carbon (New York) 117, 462 (2017). https://doi.org/10.1016/j.carbon.2017.03.013

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The XPS measurements were carried out using equipment of the Collective Use Center “Physics and Technologies of Nanostructures” of Khetagurov North-Ossetian State University.

Funding

The study was supported by the Russian Science Foundation (grant no. 22-79-10163, https://rscf.ru/project/22-79-10163/”) at the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Il’ina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ina, M.V., Soboleva, O.I., Polyvianova, M.R. et al. Study of the Piezoelectric Properties of Nitrogen-Doped Carbon Nanotubes for the Development of Energy-Efficient Nanogenerators. Nanotechnol Russia 18, 858–864 (2023). https://doi.org/10.1134/S2635167623600487

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623600487

Navigation