Skip to main content
Log in

Tuning of the Spectral Characteristics of Terahertz Quantum-Cascade Lasers

  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Terahertz quantum-cascade lasers (THz QCLs) are promising radiation sources for high-resolution gas spectroscopy. A wide operating-frequency band (from 1.2 to 5.4 THz), a narrow generation line (up to 10 kHz), the ability to operate on several radiative transitions (two-color lasers, generation of frequency combs) and other unique characteristics of THz QCLs make it possible to create gas spectrometers of a new generation for biomedical and environmental applications. In this paper, we consider the possibility of controlling the spectral characteristics of THz QCLs by changing the operating temperature and injection-current pulse parameters: amplitude, duration, and repetition rate. The energy transfer between longitudinal Fabry–Perot modes in THz QCLs is studied for the first time with a change in the duty cycle of the injection-current pulse cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. Cuisset, F. Hindle, G. Mouret, R. Bocquet, J. Bruckhuisen, J. Decker, A. Pienkina, C. Bray, É. Fertein, and V. Boudon, Appl. Sci. 11, 1229 (2021).

    Article  CAS  Google Scholar 

  2. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).

    Article  CAS  Google Scholar 

  3. R. A. Khabibullin, N. V. Shchavruk, A. Yu. Pavlov, D. S. Ponomarev, K. N. Tomosh, R. R. Galiev, P. P. Malcev, A. E. Zhukov, G. E. Cyrlin, F. I. Zubov, and Zh. I. Alforov, “Temperature dependences of the threshold current and output power of a quantum-cascade laser emitting at 3.3 THz,” Semicond. 50, 1377–1382 (2016).

    Article  CAS  Google Scholar 

  4. K. V. Marem’yanin, S. V. Morozov, V. I. Gavrilenko, A. Yu. Pavlov, N. V. Shchavruk, R. A. Khabibullin, R. R. Reznik, G. E. Cyrlin, F. I. Zubov, A. E. Zhukov, Zh. I. Alforov, and A. V. Ikonnikov, “Terahertz radiation generation in multilayer quantum-cascade heterostructures,” Techn. Phys. Lett. 43, 362 (2017).

    Article  Google Scholar 

  5. R. A. Khabibullin, N. V. Shchavruk, D. S. Ponomarev, D. V. Ushakov, A. A. Afonenko, I. S. Vasil’evskii, A. A. Zajcev, A. I. Danilov, O. Yu. Volkov, V. V. Pavlovskii, K. V. Marem’yanin, and V. I. Gavrilenko, “Fabrication of a terahertz quantum-cascade laser with a double metal waveguide based on multilayer GaAs/AlGaAs heterostructures,” Semicond. 52, 1380 (2018).

    Article  CAS  Google Scholar 

  6. M. Brandstetter, S. Schönhuber, M. Krall, M. A. Kainz, H. Detz, T. Zederbauer, A. M. Andrews, G. Strasser, and K. Unterrainer, Optics Express 24, 25462—25470 (2016).

    Article  Google Scholar 

  7. O. Yu. Volkov, I. N. Dyuzhikov, M. V. Logunov, S. A. Nikitov, V. V. Pavlovskii, N. V. Shchavruk, A. Yu. Pavlov, and R. A. Khabibullin, “Analysis of terahertz radiation spectra in multilayer GAAS/ALGAAS heterostructures,” J. Commun. Technol. Electron. 63, 1042–1046 (2018).

    Article  CAS  Google Scholar 

  8. R. A. Khabibullin, N. V. Shchavruk, D. S. Ponomarev, D. V. Ushakov, A. A. Afonenko, K. V. Maremyanin, O. Yu. Volkov, V. V. Pavlovskiy, and A. A. Dubinov, “The operation of THz quantum cascade laser in the region of negative differential resistance,” Opto-Electron. Rev. 27, 329–333 (2019).

    Article  Google Scholar 

  9. R. L. Tober, “Active region temperatures of quantum cascade lasers during pulsed excitation,” J. App. Phys. 101, 044507 (2007).

    Article  Google Scholar 

  10. A. A. Lastovkin, A. V. Ikonnikov, V. I. Gavrilenko, A. V. Antonov, and Yu. G. Sadof’ev, “Studying the frequency tuning of pulsed terahertz quantum cascade lasers,” Radiophys. Quantum Electron. 54, 609—615 (2012).

    Article  Google Scholar 

  11. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).

    Article  CAS  Google Scholar 

  12. A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Optics Lett. 29, 575–577 (2015).

    Article  Google Scholar 

  13. N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency characterization of a Terahertz quantum-cascade laser,” IEEE Trans. Instrum. Meas. 56, 262–265 (2007).

    Article  CAS  Google Scholar 

  14. G. Fasching, V. Tamosiunas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quant. Electron. 43, 687–697 (2007).

    Article  Google Scholar 

  15. M. A. Kainz, M. Wenclawiak, S. Schönhuber, M. Jaidl, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, and K. Unterrainer, “Thermal-dynamics optimization of terahertz quantum cascade lasers with different barrier compositions,” Phys. Rev. Appl. 14, 054012 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant 20-02-00362 and within the framework of the State Assignment of Mokerov Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Khabibullin or S. S. Pushkarev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabibullin, R.A., Pushkarev, S.S., Galiev, R.R. et al. Tuning of the Spectral Characteristics of Terahertz Quantum-Cascade Lasers. Nanotechnol Russia 17 (Suppl 1), S35–S40 (2022). https://doi.org/10.1134/S2635167622070102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622070102

Keywords:

Navigation