Skip to main content
Log in

Silver and Copper Alloys for the Top Electrodes of Memristive Structures Based on Poly-n-Xylylene

  • NANOELECTRONICS AND NEUROMORPHIC COMPUTER SYSTEMS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Comparative characteristics of M/PPX/ITO memristors based on poly-n-xylylene (PPX) with a bottom electrode made of a conductive layer of indium–tin oxide (ITO) and a top active electrode made of copper, silver or their alloy of various compositions (M = Cu, Ag or Ag–Cu). The research results demonstrate that the most stable memristive characteristics are possessed by structures with top electrodes of pure metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Ielmini and H.-S. P. Wong, Nat. Electron. 1, 333 (2018). https://doi.org/10.1038/s41928-018-0092-2

    Article  Google Scholar 

  2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature (London, U.K.) 453, 80 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  3. S. Shchanikov, A. Zuev, I. Bordanov, et al., Chaos, Solitons Fractals 142, 110504 (2021). https://doi.org/10.1016/j.chaos.2020.110504

    Article  Google Scholar 

  4. V. Erokhin, BioNanoSci 10, 834 (2020). https://doi.org/10.1007/s12668-020-00795-1

    Article  Google Scholar 

  5. Y. Zhang, Z. Wang, J. Zhu, et al., Appl. Phys. Rev. 7, 011308 (2020). https://doi.org/10.1063/1.5124027

    Article  CAS  Google Scholar 

  6. V. V. Rylkov, A. V. Emelyanov, S. N. Nikolaev, et al., J. Exp. Theor. Phys. 131, 160 (2020). https://doi.org/10.1134/S1063776120070109

    Article  Google Scholar 

  7. Y. van de Burgt, A. Melianas, S. T. Keene, et al., Nat. Electron. 1, 386 (2018). https://doi.org/10.1038/s41928-018-0103-3

    Article  Google Scholar 

  8. A. A. Minnekhanov, A. V. Emelyanov, D. A. Lapkin, et al., Sci. Rep. 9, 10800 (2019). https://doi.org/10.1038/s41598-019-47263-9

    Article  CAS  Google Scholar 

  9. A. N. Matsukatova, A. V. Emelyanov, A. A. Minnekhanov, et al., Appl. Phys. Lett. 117, 243501 (2020). https://doi.org/10.1063/5.0030069

    Article  CAS  Google Scholar 

  10. Y. Li, Z. Wang, R. Midya, et al., J. Phys. D. Appl. Phys., 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f

  11. Y. Cai, J. Tan, L. Yefan, et al., Nanotechnology 27, 275206 (2016). https://doi.org/10.1088/0957-4484/27/27/275206

    Article  CAS  Google Scholar 

  12. B. S. Shvetsov, A. N. Matsukatova, A. A. Minnekhanov, et al., Tech. Phys. Lett. 45, 1103 (2019). https://doi.org/10.1134/S1063785019110130

    Article  CAS  Google Scholar 

  13. G. U. Siddiqui, M. M. Rehman, Y. J. Yang, and K. H. Choi, J. Mater. Chem. C 5, 862 (2017). https://doi.org/10.1039/c6tc04345c

    Article  CAS  Google Scholar 

  14. Q. Chen, M. Lin, Z. Wang, et al., Adv. Electron. Mater. 5, 1800852 (2019). https://doi.org/10.1002/aelm.201800852

    Article  CAS  Google Scholar 

  15. R. Wang, Y. Liu, B. Bai, et al., J. Phys. D: Appl. Phys. 49, 07LT02 (2016). https://doi.org/10.1088/0022-3727/49/7/07LT02

    Article  CAS  Google Scholar 

  16. B. J. Kim, C. A. Gutierrez, and E. Meng, J. Microelectromech. Syst. 24, 1534 (2015). https://doi.org/10.1109/JMEMS.2015.2420043

    Article  CAS  Google Scholar 

  17. G. W. Burr, R. M. Shelby, A. Sebastian, et al., Adv. Phys. X 2, 89 (2017). https://doi.org/10.1080/23746149.2016.1259585

    Article  Google Scholar 

  18. Y. Yang, P. Gao, S. Gaba, et al., Nat. Commun. 3, 732 (2012). https://doi.org/10.1038/ncomms1737

    Article  CAS  Google Scholar 

  19. A. A. Minnekhanov, B. S. Shvetsov, M. M. Martyshov, et al., Org. Electron. 74, 89 (2019). https://doi.org/10.1016/j.orgel.2019.06.052

    Article  CAS  Google Scholar 

  20. M. Lübben and I. Valov, Adv. Electron. Mater. 5 (9), 1 (2019). https://doi.org/10.1002/aelm.201800933

    Article  CAS  Google Scholar 

  21. S. Choi, S. H. Tan, Z. Li, et al., Nat. Mater. 17, 335 (2018). https://doi.org/10.1038/s41563-017-0001-5

    Article  CAS  Google Scholar 

  22. B. S. Shvetsov, A. V. Emelyanov, A. A. Minnekhanov, et al., Nanotechnol. Russ. 14, 1 (2019). https://doi.org/10.1134/S1995078019010105

    Article  CAS  Google Scholar 

  23. J. Yang, H. Ryu, and S. Kim, Chaos Solitons Fractals 145, 110783 (2021). https://doi.org/10.1016/j.chaos.2021.110783

    Article  Google Scholar 

  24. H. Yeon, P. Lin, C. Choi, et al., Nat. Nanotechnol. 15, 574 (2020). https://doi.org/10.1038/s41565-020-0694-5

    Article  CAS  Google Scholar 

  25. W. Wang, M. Wang, E. Ambrosi, et al., Nat. Commun. 10, 81 (2019). https://doi.org/10.1038/s41467-018-07979-0

    Article  CAS  Google Scholar 

  26. S. Saïghi, C. G. Mayr, T. Serrano-Gotarredona, et al., Front. Neurosci. 9, 51 (2015). https://doi.org/10.3389/fnins.2015.00051

    Article  Google Scholar 

  27. K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, et al., Tech. Phys. Lett. 44, 416 (2018). https://doi.org/10.1134/S106378501805022X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Nesmelov (National Research Center “Kurchatov Institute”) and Professor A.V. Sitnikov (Voronezh State Technical University) for their help in fabricating the memristive structures. The measurements were carried out using equipment of the resource centers of the National Research Center “Kurchatov Institute”.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 20-07-00696, 20-57-7801, 18-29-19047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Shvetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvetsov, B.S., Emelyanov, A.V., Minnekhanov, A.A. et al. Silver and Copper Alloys for the Top Electrodes of Memristive Structures Based on Poly-n-Xylylene. Nanotechnol Russia 16, 777–781 (2021). https://doi.org/10.1134/S2635167621060239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621060239

Navigation