Skip to main content
Log in

Macrophage and Mycobacterium: The war without beginning or end

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Mechanisms of macrophage polarization towards M1 phenotype or M2 phenotype, as well as of macrophage transformation into foam cells upon interaction with mycobacteria, are discussed. The possible effects of Mycobacterium tuberculosis (Mtb) on macrophage polarization and activation are analyzed. The role of different cell-death pathways (apoptosis, necrosis, and autophagy) in mycobacteria persistence in vitro and in vivo is elucidated. The most likely means of macrophage reprogramming to increase their microbicidal activity for the purpose of tuberculosis treatment and prevention are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilo, N., Marinova, D., Martin, C., and Pardo, J., ESX-1-induced apoptosis during mycobacterial infection: to be or not to be, that is the question, Front. Cell. Infect. Microbiol., 2013, vol. 3, art. 88, pp. 1–7.

    Google Scholar 

  • Almeida, P.E., Carneiro, A.B., Silva, A.R., and Bozza, P.T., PPAR? expression and function in Mycobacterial infection: roles in lipid metabolism, immunity, and bacterial killing, PPAR Res., 2012, vol. 2012, pp. 1–7.

    Article  CAS  Google Scholar 

  • Almeida, P.E., Roque, N.R., Magalhaes, K.G., et al., Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection, Biochim. Biophys. Acta, 2014, vol. 1841, pp. 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, P.E., Silva, A.R., Maya-Monteiro, C.M., et al., Mycobacterium bovis bacillus Calmette-Guerin infection induces TLR2-dependent peroxisome proliferator-activated receptor I expression and activation: functions in inflammation, lipid metabolism, and pathogenesis, J. Immunol., 2009, vol. 183, pp. 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  • Ashida, H., Mimuro, H., Ogawa, M., et al., Cell death and infection: a double-edged sword for host and pathogen survival, J. Cell Biol., 2011, vol. 195, pp. 931–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Averbakh, M.M., Tuberculous granuloma: modern insight on immunogenesis and cell content, Tuberk. Bolezni Legk., 2010, vol. 87, no. 6, pp. 3–9.

    Google Scholar 

  • Bafica, A., Scanga, C.A., Feng, C.G., et al., TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis, J. Exp. Med., 2005, vol. 202, pp. 1715–1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, X., Feldman, N.E., Chmura, K., et al., Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages, PLoS One, 2013, vol. 8, pp. e61925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, D. and Bhattacharyya, R., Statin therapy may prevent development of tuberculosis in diabetic state, Med. Hypotheses, 2014, vol. 83, pp. 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Battersby, A.J., Kampmann, B., and Burl, S., Vitamin D in early childhood and the effect on immunity to Mycobacterium tuberculosis, Clin. Dev. Immunol., 2012, vol. 2012, pp. 1–10.

    Article  CAS  Google Scholar 

  • Behar, S.M., Divangahi, M., and Remold, H.G., Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat. Rev. Microbiol., 2010, vol. 8, pp. 668–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla, D.L., Bhattacharya, A., Sha, Y., et al., Autophagy regulates phagocytosis by modulating the expression of scavenger receptors, Immunity, 2013, vol. 39, pp. 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Bos, K.I., Harkins, K.M., Herbig, A., et al., Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis, Nature, 2014, vol. 514, pp. 494–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briken, V., Mycobacterium tuberculosis genes involved in regulation of host cell death, Adv. Exp. Med. Biol., 2013, vol. 783, pp. 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Briken, V. and Miller, J.L., Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis, Future Microbiol., 2008, vol. 3, pp. 415–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brune, B., Dehne, N., Grossmann, N., et al., Redox control of inflammation in macrophages, Antioxid. Redox Signaling, 2013, vol. 19, pp. 595–637.

    Article  CAS  Google Scholar 

  • Cabal-Hierro, L. and Lazo, P.S., Signal transduction by tumor necrosis factor receptors, Cell Signaling, 2012, vol. 24, pp. 1297–1305.

    Article  CAS  Google Scholar 

  • Caceres, N., Tapia, G., Ojanguren, I., et al., Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models, Tuberculosis, 2009, vol. 89, pp. 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Cadwell, K. and Philips, J.A., Autophagy meets phagocytosis, Immunity, 2013, vol. 39, pp. 425–427.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, G.R. and Spector, S.A., Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy, PLoS Pathog., 2012, vol. 8, p. e1002689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, E.D., Chan, J., and Schluger, N.W., What is the role of nitric oxide in murine and human host defense against tuberculosis? Am. J. Respir. Cell Mol. Biol., 2001, vol. 25, pp. 606–612.

    Article  CAS  PubMed  Google Scholar 

  • Chun, R.F., Adams, J.S., and Hewison, M., Immunomodulation by vitamin D: implications for TB, Expert Rev. Clin. Pharmacol., 2011, vol. 4, pp. 583–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comas, I., Coscolla, M., Luo, T., et al., Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans, Nat. Genet., 2013, vol. 45, pp. 1176–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, A.M. and Khader, S.A., The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis, Immunol. Rev., 2008, vol. 226, pp. 191–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyktor, J.C., Carruthers, B., Kominsky, R.A., et al., IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection, J. Immunol., 2013, vol. 190, pp. 2778–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Date, D., Das, R., Narla, G., et al., Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization, J. Biol. Chem., 2014, vol. 289, pp. 10318–10329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, A.S., Vergne, I., Master, S.S., et al., Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes, PLoS Pathog., 2007, vol. 3, p. e186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delogu, G., Sali, M., and Fadda, G., The biology of mycobacterium tuberculosis infection, Medit. J. Hematol. Infect. Dis., 2013, vol. 5, p. e2013070.

    Article  Google Scholar 

  • Deretic, V., Autophagy in tuberculosis, Cold Spring Harb. Persp. Med., 2014, vol. 4, pp. 1–15.

    Google Scholar 

  • Divangahi, M., Behar, S.M., and Remold, H., Dying to live: how the death modality of the infected macrophage affects immunity to tuberculosis, Adv. Exp. Med. Biol., 2013, vol. 783, pp. 103–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dkhar, H.K., Nanduri, R., Mahajan, S., et al., Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair, J. Immunol., 2014, vol. 193, pp. 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Dorhoi, A. and Kaufmann, S.H., Tumor necrosis factor alpha in mycobacterial infection, Semin. Immunol., 2014, vol. 26, pp. 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Dorozhkova, I.R., Tuberculosis pathogen: history of discovery and study, Tuberk. Bolezni Legk., 2012, no. 3, pp. 3–14.

    Google Scholar 

  • Dushkin, M.I., Macrophage/foam cell is an attribute of inflammation: mechanisms of formation and functional role, Biochemistry (Moscow), 2012, vol. 77, no. 4, pp. 327–338.

    CAS  PubMed  Google Scholar 

  • Dyken van, S.J. and Locksley, R.M., Interleukin-4-and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease, Annu. Rev. Immunol., 2013, vol. 31, pp. 317–343.

    Article  CAS  Google Scholar 

  • Ehrt, S. and Schnappinger, D., Mycobacterial survival strategies in the phagosome: defense against host stresses, Cell. Microbiol., 2009, vol. 11, pp. 1170–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kasmi, K.C., Qualls, J.E., Pesce, J.T., et al., Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens, Nat. Immunol., 2008, vol. 9, pp. 1399–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elks, P.M., Brizee, S., van der Vaart, M., et al., Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism, PLoS Pathog., 2013, vol. 9, p. e1003789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fallahi-Sichani, M., Kirschner, D.E., and Linderman, J.J., NF-κB signaling dynamics play a key role in infection control in tuberculosis, Front. Physiol., 2012, vol. 3, pp. 1–25.

    Article  Google Scholar 

  • Feng, Y., Dorhoi, A., Mollenkopf, H.J., et al., Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation, J. Infect. Dis., 2014, vol. 210, pp. 1700–1710.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrante, C.J. and Leibovich, S.J., Regulation of macrophage polarization and wound healing, Adv. Wound Care, 2012, vol. 1, pp. 10–16.

    Article  Google Scholar 

  • Ferrari, C.K., Souto, P.C., Franca, E.L., and Honorio-Franca, A.C., Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms, Arch. Immunol. Ther. Exp., 2011, vol. 59, pp. 441–448.

    Article  CAS  Google Scholar 

  • Frisdal, E., Lesnik, P., Olivier, M., et al., Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response, J. Biol. Chem., 2011, vol. 286, pp. 30926–30936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, M., Harada, E., Matsumoto, T., et al., Impaired host defense against Mycobacterium avium in mice with chronic granulomatous disease, Clin. Exp. Immunol., 2010, vol. 160, pp. 457–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi, L., Vitale, I., Abrams, J.M., et al., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 2012, vol. 19, pp. 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Gloire, G. and Piette, J., Redox regulation of nuclear posttranslational modifications during NF-κB activation, Antioxid. Redox Signaling, 2009, vol. 11, pp. 2209–2222.

    Article  CAS  Google Scholar 

  • Green, J.A., Elkington, P.T., Pennington, C.J., et al., Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-κB-and activator protein-1-dependent monocyte networks, J. Immunol., 2010, vol. 184, pp. 6492–6503.

    Article  CAS  PubMed  Google Scholar 

  • Guirado, E., Schlesinger, L.S., and Kaplan, G., Macrophages in tuberculosis: friend or foe, Semin. Immunopathol., 2013, vol. 35, pp. 563–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, A., Kaul, A., Tsolaki, A.G., et al., Mycobacterium tuberculosis: immune evasion, latency and reactivation, Immunobiology, 2012, vol. 217, pp. 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J., Autophagy and cytokines, Cytokine, 2011, vol. 56, pp. 140–144.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. and Keane, J., How tumor necrosis factor blockers interfere with tuberculosis immunity, Clin. Exp. Immunol., 2010, vol. 161, pp. 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heitmann, L., Abad Dar, M., Schreiber, T., et al., The IL-13/IL-4Ra axis is involved in tuberculosis-associated pathology, J. Pathol., 2014, vol. 234, pp. 338–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst, S., Schaible, U.E., and Schneider, B.E., Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis, PLoS One, 2011, vol. 6, p. e19105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain, M.M. and Norazmi, M.N., Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection-the double-edged sword? Biomed. Res. Int., 2013, vol. 2013, pp. 1–18.

    Article  Google Scholar 

  • Huynh, K.K., Joshi, S.A., and Brown, E.J., A delicate dance: host response to mycobacteria, Curr. Opin. Immunol., 2011, vol. 23, pp. 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Jain, A. and Singh, J.A., Harms of TNF inhibitors in rheumatic diseases: a focused review of the literature, Immunotherapy, 2013, vol. 5, pp. 265–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo, E.K., Autophagy as an innate defense against mycobacteria, Pathog. Dis., 2013, vol. 67, pp. 108–118.

    Article  CAS  PubMed  Google Scholar 

  • Juarez, E., Carranza, C., Hernandez-Sanchez, F., et al., NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans, Eur. J. Immunol., 2012, vol. 42, pp. 880–889.

    Article  CAS  PubMed  Google Scholar 

  • Jung, J.Y., Madan-Lala, R., Georgieva, M., et al., The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria, Infect. Immun., 2013, vol. 81, pp. 3198–3209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadl, A., Meher, A.K., Sharma, P.R., et al., Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2, Circ. Res., 2010, vol. 107, pp. 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann, S.H., Tuberculosis vaccines: time to think about the next generation, Semin. Immunol., 2013, vol. 25, pp. 172–181.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann, S.H.E. and Dorhoi, A., Inflammation in tuberculosis: interactions, imbalances, and interventions, Curr. Opin. Immunol., 2013, vol. 25, pp. 441–449.

    Article  CAS  PubMed  Google Scholar 

  • Keeton, R., Allie, N., Dambuza, I., et al., Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis, J. Clin. Invest., 2014, vol. 124, pp. 1537–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.J., Lee, H.M., Shin, D.M., et al., Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action, Cell Host Microbe, 2012, vol. 11, pp. 457–468.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., Sohn, H., Kim, J.S., et al., Mycobacterium tuberculosis Rv0652 stimulates production of tumor necrosis factor and monocytes chemoattractant protein-1 in macrophages through the toll-like receptor 4 pathway, Immunology, 2012, vol. 136, pp. 231–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinnijenhuis, J., Oosting, M., Joosten, L.A., et al., Innate immune recognition of Mycobacterium tuberculosis, Clin. Dev. Immunol., 2011, vol. 2011, pp. 1–12.

    Article  CAS  Google Scholar 

  • Kolpakova, T.A., The problem of co-morbidity in the course of bronchial tuberculosis, Byull. Vost.-Sib. Nauch. Tsentra, Sib. Otd., Ross. Akad. Med. Nauk, 2011, no. 2, pp. 48–51.

    Google Scholar 

  • Korf, H., Vander Beken, S., Romano, M., et al., Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice, J. Clin. Invest., 2009, vol. 119, pp. 1626–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnov, V.A., Zenkov, N.K., Kolpakov, A.R., and Menshchikova, E.B., Activated oxygen metabolites at tuberculosis, Probl. Tuberk. Bolezn. Legk., 2005, no. 9, pp. 9–16.

    PubMed  Google Scholar 

  • Kumar, A., Farhana, A., Guidry, L., et al., Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev. Mol. Med., 2011, vol. 13, p. e39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lalvani, A. and Pareek, M., Interferon gamma release assays: principles and practice, Enferm. Infecc. Microbiol. Clin., 2010, vol. 28, pp. 245–252.

    Article  PubMed  Google Scholar 

  • Liao, D., Fan, Q., and Bao, L., The role of superoxide dismutase in the survival of Mycobacterium tuberculosis in macrophages, Jpn. J. Infect. Dis., 2013, vol. 66, pp. 480–488.

    Article  PubMed  Google Scholar 

  • Liao, X., Sharma, N., Kapadia, F., et al., Kruppel-like factor 4 regulates macrophage polarization, J. Clin. Invest., 2011, vol. 121, pp. 2736–2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, P.T., Stenger, S., Li, H., et al., Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response, Science, 2006, vol. 311, pp. 1770–1773.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Peng, Y., Yin, Y., et al., The involvement of NADPH oxidase-mediated ROS in cytokine secretion from macrophages induced by Mycobacterium tuberculosis ESAT-6, Inflammation, 2014, vol. 37, pp. 880–892.

    Article  CAS  PubMed  Google Scholar 

  • Locati, M., Mantovani, A., and Sica, A., Macrophage activation and polarization as an adaptive component of innate immunity, Adv. Immunol., 2013, vol. 120, pp. 163–184.

    Article  CAS  PubMed  Google Scholar 

  • Lugo-Villarino, G., Hudrisier, D., Benard, A., and Neyrolles, O., Emerging trends in the formation and function of tuberculosis granulomas, Front. Immunol., 2012, vol. 3, pp. 1–9.

    Google Scholar 

  • Lugo-Villarino, G. and Neyrolles, O., Manipulation of the mononuclear phagocyte system by Mycobacterium tuberculosis, Cold Spring Harbor Perspect. Med., 2014, vol. 4, pp. 1–14.

    Article  Google Scholar 

  • Luzina, I.G., Keegan, A.D., Heller, N.M., et al., Regulation of inflammation by interleukin-4: a review of “alternatives,” J. Leukocyte Biol., 2012, vol. 92, pp. 753–764.

    CAS  PubMed  Google Scholar 

  • Mackaness, G.B., The immunological basis of acquired cellular resistance, J. Exp. Med., 1964, vol. 120, pp. 105–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan, S., Dkhar, H.K., Chandra, V., et al., Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPAR? and TR4 for survival, J. Immunol., 2012, vol. 188, pp. 5593–5603.

    Article  CAS  PubMed  Google Scholar 

  • Martens, G.W., Vallerskog, T., and Kornfeld, H., Hypercholesterolemic LDL receptor-deficient mice mount a neutrophilic response to tuberculosis despite the timely expression of protective immunity, J. Leukocyte Biol., 2012, vol. 91, pp. 849–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, C.J., Booty, M.G., Rosebrock, T.R., et al., Efferocytosis is an innate antibacterial mechanism, Cell Host Microbe, 2012, vol. 12, pp. 289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, F.O. and Gordon, S., The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000Prime Rep., 2014, vol. 6, pp. 1–13.

    Article  CAS  Google Scholar 

  • Mattila, J.T., Ojo, O.O., Kepka-Lenhart, D., et al., Microenvironments in tuberculosis granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms, J. Immunol., 2013, vol. 191, pp. 773–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Means, T.K., Jones, B.W., Schromm, A.B., et al., Differential effects of a toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses, J. Immunol., 2001, vol. 166, pp. 4074–4082.

    Article  CAS  PubMed  Google Scholar 

  • Melo, R.C., D’Avila, H., Wan, H.C., et al., Lipid bodies in inflammatory cells: structure, function, and current imaging techniques, J. Histochem. Cytochem., 2011, vol. 59, pp. 540–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menshchikova, E.B., Zenkov, N.K., Lankin, V.Z., et al., Okislitel’nyi stress. Patologicheskie sostoyaniya i zabolevaniya (Oxidative Stress. Pathological States and Diseases), Novosibirsk: ARTA, 2008.

    Google Scholar 

  • Mizuno, S., Yamamoto, M., and Sugawara, I., Significant reduction of granulomas in Nrf2-deficient mice infected with Mycobacterium tuberculosis, Indian J. Tuberc., 2010, vol. 57, pp. 108–113.

    CAS  PubMed  Google Scholar 

  • Molloy, A., Laochumroonvorapong, P., and Kaplan, G., Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin, J. Exp. Med., 1994, vol. 180, pp. 1499–1509.

    Article  CAS  PubMed  Google Scholar 

  • Monastyrskaya, E.A., Lyamina, S.V., and Malyshev, I.Yu., M1 and M2 phenotypes of activated macrophages and their role in immune response and pathology, Patogenez, 2008, vol. 6, no. 4, pp. 31–39.

    Google Scholar 

  • Moreno, J.L., Mikhailenko, I., Tondravi, M.M., and Keegan, A.D., IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin, J. Leukocyte Biol., 2007, vol. 82, pp. 1542–1553.

    Article  CAS  PubMed  Google Scholar 

  • Nasonov, E.L., Koslov, R.S., and Yakushin, S.B., Infectious complications in the therapy by inhibitor of tumor necrosis factor, Klin. Mikrobiol. Antimikrob. Khimioter., 2006, vol. 8, no. 4, pp. 314–324.

    Google Scholar 

  • Newton-Foot, M. and Gey van Pittius, N.C., The complex architecture of mycobacterial promoters, Tuberculosis, 2013, vol. 93, pp. 60–74.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J.E. and Lee, H.K., Pattern recognition receptors and autophagy, Front. Immunol., 2014, vol. 5, pp. 1–7.

    Article  CAS  Google Scholar 

  • Olobo, J.O., Geletu, M., Demissie, A., et al., Circulating TNF-a, TGF-β, and IL-10 in tuberculosis patients and healthy contacts, Scand. J. Immunol., 2001, vol. 53, pp. 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Onoprienko, L.V., Molecular mechanisms of regulation of the macrophage activity, Russ. J. Bioorg. Chem., 2011, vol. 37, no. 4, pp. 387–399.

    Article  CAS  Google Scholar 

  • Ouellet, H., Johnston, J.B., and de Montellano, P.R., Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis, Trends Microbiol., 2011, vol. 19, pp. 530–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palanisamy, G.S., Kirk, N.M., Ackart, D.F., et al., Evidence for oxidative stress and defective antioxidant response in Guinea pigs with tuberculosis, PLoS One, 2011, vol. 6, p. e26254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parandhaman, D.K. and Narayanan, S., Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection, Front. Cell. Infect. Microbiol., 2014, vol. 4, pp. 1–7.

    Article  CAS  Google Scholar 

  • Parkash, O., Vaccine against tuberculosis: a view, J. Med. Microbiol., 2014, vol. 63, pp. 777–779.

    Article  PubMed  Google Scholar 

  • Pearl, J.E., Saunders, B., Ehlers, S., et al., Inflammation and lymphocyte activation during mycobacterial infection in the interferon-gamma-deficient mouse, Cell. Immunol., 2001, vol. 211, pp. 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Guzman, C., Vargas, M.H., Quinonez, F., et al., A cholesterol-rich diet accelerates bacteriologic sterilization in pulmonary tuberculosis, Chest, 2005, vol. 127, pp. 643–651.

    Article  PubMed  Google Scholar 

  • Pesce, J., Kaviratne, M., Ramalingam, T.R., et al., The IL-21 receptor augments Th2 effector function and alternative macrophage activation, J. Clin. Invest., 2006, vol. 116, pp. 2044–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessanha, A.P., Martins, R.A., Mattos-Guaraldi, A.L., et al., Arginase-1 expression in granulomas of tuberculosis patients, FEMS Immunol. Med. Microbiol., 2012, vol. 66, pp. 265–268.

    Article  CAS  PubMed  Google Scholar 

  • Peyron, P., Vaubourgeix, J., Poquet, Y., et al., Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence, PLoS Patog., 2008, vol. 4, p. e1000204.

    Article  CAS  Google Scholar 

  • Pfeffer, L.M., The role of nuclear factor B in the interferon response, J. Interferon Cytokine Res., 2011, vol. 31, pp. 553–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichugin, A.V. and Apt, A.S., Cell apoptosis of immune system at tuberculosis infection, Probl. Tuberk. Bolezn. Legk., 2005, no. 12, pp. 3–7.

    PubMed  Google Scholar 

  • Polvani, S., Tarocchi, M., and Galli, A., PPAR? and oxidative stress: Con(β) catenating NRF2 and FOXO, PPAR Res., 2012, vol. 2012, pp. 1–15.

    Article  CAS  Google Scholar 

  • Ponpuak, M., Davis, A.S., Roberts, E.A., et al., Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties, Immunity, 2010, vol. 32, pp. 329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qualls, J.E., Neale, G., Smith, A.M., et al., Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling, Sci. Signaling, 2010, vol. 3, pp. 1–16.

    Article  CAS  Google Scholar 

  • Redente, E.F., Higgins, D.M., Dwyer-Nield, L.D., et al., Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation, J. Leukocyte Biol., 2010, vol. 88, pp. 159–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redford, P.S., Boonstra, A., Read, S., et al., Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung, Eur. J. Immunol., 2010, vol. 40, pp. 2200–2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redford, P.S., Murray, P.J., and O’Garra, A., The role of IL-10 in immune regulation during M. tuberculosis infection, Mucosal Immunol., 2011, vol. 4, pp. 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Roca, F.J. and Ramakrishnan, L., TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species, Cell, 2013, vol. 153, pp. 521–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin, F. and Yildiz, P., Distinctive biochemical changes in pulmonary tuberculosis and pneumonia, Arch. Med. Sci., 2013, vol. 9, pp. 656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakhno, L.V. and Chernykh, E.R., Antigen-producing cells at the bronchial tuberculosis, Tuberk. Bolezni Legk., 2012, no. 1, pp. 3–9.

    Google Scholar 

  • Salamon, H., Bruiners, N., Lakehal, K., et al., Cutting edge: vitamin D regulates lipid metabolism in Mycobacterium tuberculosis infection, J. Immunol., 2014, vol. 193, pp. 30–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjurjo, L., Amezaga, N., Vilaplana, C., et al., The scavenger protein apoptosis inhibitor of macrophages (AIM) potentiates the antimicrobial response against Mycobacterium tuberculosis by enhancing autophagy, PLoS One, 2013, vol. 8, p. e79670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaler, C.R., Horvath, C.N., Jeyanathan, M., and Xing, Z., Within the enemy’s camp: contribution of the granuloma to the dissemination, persistence, and transmission of Mycobacterium tuberculosis, Front. Immunol., 2013, vol. 4, pp. 1–8.

    Article  CAS  Google Scholar 

  • Sica, A. and Mantovani, A., Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest., 2012, vol. 122, pp. 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigidin, Ya.A. and Lukina, G.V., The risk of tuberculosis development at the implementation of inhibitors of alpha-tumor necrosis factor, Russ. Med. Zh., 2009, no. 21, pp. 1438–1442.

    Google Scholar 

  • Singh, V., Jamwal, S., Jain, R., et al., Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype, Cell Host Microbe, 2012, vol. 12, pp. 669–681.

    Article  CAS  PubMed  Google Scholar 

  • Songane, M., Kleinnijenhuis, J., Netea, M.G., and van Crevel, R., The role of autophagy in host defense against Mycobacterium tuberculosis infection, Tuberculosis, 2012, vol. 92, pp. 388–396.

    Article  PubMed  Google Scholar 

  • Sridharan, H. and Upton, J.W., Programmed necrosis in microbial pathogenesis, Trends Microbiol., 2014, vol. 22, pp. 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, L., Ahlbrand, S., and Briken, V., Interaction of Mycobacterium tuberculosis with host cell death pathways, Cold Spring Harbor Persp. Med., 2014, vol. 4, pp. 1–15.

    Google Scholar 

  • Stanley, S.A. and Cox, J.S., Host-pathogen interactions during Mycobacterium tuberculosis infections, Curr. Top. Microbiol. Immunol., 2013, vol. 374, pp. 211–241.

    CAS  PubMed  Google Scholar 

  • Stein, M., Keshav, S., Harris, N., and Gordon, S., Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation, J. Exp. Med., 1992, vol. 176, pp. 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Striz, I., Brabcova, E., Kolesar, L., and Sekerkova, A., Cytokine networking of innate immunity cells: a potential target of therapy, Clin. Sci., 2014, vol. 126, pp. 593–612.

    Article  CAS  PubMed  Google Scholar 

  • Sukhanov, D.S., Immunotropic therapy of tuberculosis infection, Ter. Arkh., 2013, no. 3, pp. 110–117.

    Google Scholar 

  • Szanto, A., Balint, B.L., Nagy, Z.S., et al., STAT6 transcription factor is a facilitator of the nuclear receptor PPAR?-regulated gene expression in macrophages and dendritic cells, Immunity, 2010, vol. 33, pp. 699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda, N., O’Dea, E.L., Doedens, A., et al., Differential activation and antagonistic function of HIF-a isoforms in macrophages are essential for NOhomeostasis, Genes Dev., 2010, vol. 24, pp. 491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, J.L., Hattle, J.M., Dreitz, S.A., et al., Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection, Infect. Immun., 2006, vol. 74, pp. 6135–6144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torun, E., Gedik, A.H., Cakir, E., et al., Serum paraoxonase 1 activity and oxidative stress in pediatric patients with pulmonary tuberculosis, Med. Princ. Pract., 2014, vol. 23, pp. 1–7.

    Article  Google Scholar 

  • Tugal, D., Liao, X., and Jain, M.K., Transcriptional control of macrophage polarization, Arterioscler., Thromb., Vasc. Biol., 2013, vol. 33, pp. 1135–1144.

    Article  CAS  Google Scholar 

  • Walford, H.H. and Doherty, T.A., STAT6 and lung inflammation, JAK-STAT, 2013, vol. 2, p. e25301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winthrop, K.L. and Iseman, M., Bedfellows: mycobacteria and rheumatoid arthritis in the era of biologic therapy, Nat. Rev. Rheumatol., 2013, vol. 9, pp. 524–531.

    Article  PubMed  Google Scholar 

  • Xiao, X. and Song, B.L., SREBP: a novel therapeutic target, Acta Biochim. Biophys. Sin., 2013, vol. 45, pp. 2–10.

    Article  CAS  PubMed  Google Scholar 

  • Xu, G., Wang, J., Gao, G.F., and Liu, C.H., Insights into battles between Mycobacterium tuberculosis and macrophages, Protein Cell, 2014, vol. 5, pp. 728–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C.S., Shin, D.M., Kim, K.H., et al., NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression, J. Immunol., 2009, vol. 182, pp. 3696–3705.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C.S., Yuk, J.M., and Jo, E.K., The role of nitric oxide in mycobacterial infections, Immune Network, 2009, vol. 9, pp. 46–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Li, C., Hong, W., et al., Autophagy during Mycobacterium tuberculosis infection and implications for future tuberculosis medications, Cell. Signaling, 2013, vol. 25, pp. 1272–1278.

    Article  CAS  Google Scholar 

  • Zenkov, N.K., Menshchikova, E.B., and Shkurupii, V.A., Triggering mechanism of macrophages, Usp. Sovrem. Biol., 2007, vol. 127, no. 3, pp. 243–256.

    CAS  Google Scholar 

  • Zenkov, N.K., Menshchikova, E.B., and Tkachev, V.O., Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target, Biochemistry (Moscow), 2013, vol. 78, no. 1, pp. 19–36.

    CAS  PubMed  Google Scholar 

  • Zuniga, J., Torres-Garcia, D., Santos-Mendoza, T., et al., Cellular and humoral mechanisms involved in the control of tuberculosis, Clin. Dev. Immunol., 2012, vol. 2012, pp. 1–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kolpakova.

Additional information

Original Russian Text © N.K. Zenkov, A.V. Chechushkov, P.M. Kozhin, T.A. Kolpakova, E.B. Menshchikova, 2015, published in Uspekhi Sovremennoi Biologii, 2015, Vol. 135, No. 6, pp. 554–574.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkov, N.K., Chechushkov, A.V., Kozhin, P.M. et al. Macrophage and Mycobacterium: The war without beginning or end. Biol Bull Rev 6, 289–308 (2016). https://doi.org/10.1134/S2079086416040095

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086416040095

Keywords

Navigation