Skip to main content
Log in

Crisis of the term “mutation” and its resolution in the context of the differential concept of variability

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The traditional views on mutations are critically analyzed. It is shown that in modern genetics, the term mutation is used inadequately, covering an overly wide range of phenomena. We propose a strict definition of this term, which allows clear distinguishing mutations from all other variability manifestations. The main approaches to classify mutations are discussed. The meaning of the term “combinatorial variability” is also specified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, K., Katakami, H., Kim, H.-J., et al., Epigenetic inheritance in rice plants, Ann. Bot., 2007, vol. 100, pp. 205–217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alexander, M.L. and Stone, W.S., Radiation damage in the developing germ cells of Drosophila virilis, Proc. Natl. Acad. Sci. U.S.A., 1955, vol. 41, pp. 1046–1057.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen, G.E., Hugo de Vries and the reception of the “mutation theory,” J. Hist. Biol., 1969, vol. 2, pp. 55–87.

    Article  Google Scholar 

  • Anders, K.R. and Botstein, D., Dominant-lethal α-tubulin mutants defective in microtubule depolymerization in yeast, Mol. Biol. Cell, 2001, vol. 12, pp. 3973–3986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arteaga-Vazquez, M.A. and Chandler, V.L., Paramutation in maize: RNA mediated trans-generational gene silencing, Curr. Opin. Genet. Dev., 2010, vol. 20, pp. 156–163.

    Article  PubMed Central  CAS  Google Scholar 

  • Auerbach, Ch., Mutation Research: Problems, Results and Perspectives, London: Chapman & Hall, 1976.

    Book  Google Scholar 

  • Aul’chenko, Yu.S. and Aksenovich, T.I., Approaches and strategies of sequencing of the genes regulating general features of a man, Vestn. Vavilov. O-va. Genet. Selekts., 2006, vol. 10, pp. 189–202.

    Google Scholar 

  • Avery, O.T., MacLeod, C.M., and McCarty, M., Studies on the chemical nature of the substance inducing transformation of pneumococcal types, J. Exp. Med., 1944, vol. 79, pp. 137–158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ayala, F. and Kiger, J., Modern Genetics, London: Benjamin/Cummings, 1984.

    Google Scholar 

  • Barclay, B.J., De Haan, C.L., Hennig, U.G.G., et al., A rapid assay for mitochondrial DNA damage and respiratory chain inhibition in the yeast Saccharomyces cerevisiae, Environ. Mol. Mutagen., 2001, vol. 38, pp. 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Barton, N.H. and Keightley, P.D., Understanding quantitative genetic variation, Nat. Rev. Genet., 2002, vol. 3, pp. 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Baur, E., Einfuhrung in die Vererbungslehre, Berlin: Borntraeger, 1930.

    Google Scholar 

  • Benzer, S., On the topography of the genetic fine structure, Proc. Natl. Acad. Sci. U.S.A., 1961, vol. 47, pp. 403–415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bogdanova, E.D., Makhmudova, K.Kh., and Levites, E.V., Marker traits of variability induced in Triticum aestivum L. by nicotinic acid, Russ. J. Genet., 2009, vol. 45, no. 3, pp. 308–312.

    Article  CAS  Google Scholar 

  • Bogue, M. and Roth, D.B., Mechanism of V(D)J recombination, Curr. Opin. Immunol., 1996, vol. 8, pp. 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Bridges, C.B., The origin of variation in sexual and sex-limited characters, Am. Nat., 1922, vol. 56, pp. 51–63.

    Article  Google Scholar 

  • Bridges, C.B., Aberrations in chromosomal materials, Eugen., Genet. Fam., 1923, vol. 1, pp. 76–81.

    Google Scholar 

  • Brink, R.A., Paramutations at the R locus in maize, Cold Spring Harbor Symp. Quant. Biol., 1958, vol. 23, pp. 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Butler, M.G., Genomic imprinting disorders in humans: a mini-review, J. Assist. Reprod. Genet., 2009, vol. 26, pp. 477–486.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chernoff, Y., Mutation processes at the protein level: is Lamarck back?, Mutat. Res., 2001, vol. 488, pp. 39–64.

    Article  CAS  PubMed  Google Scholar 

  • Christoffers, M.J., Genetic aspects of herbicide-resistant weed management, Weed Technol., 1999, vol. 13, pp. 647–652.

    Google Scholar 

  • Craig, N.L., The mechanism of conservative site-specific recombination, Annu. Rev. Genet., 1988, vol. 22, pp. 77–105.

    Article  CAS  PubMed  Google Scholar 

  • Cubas, P., Vincent, C., and Coen, E., An epigenetic mutation responsible for natural variation in floral symmetry, Nature, 1999, vol. 401, pp. 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Cullis, C.A., Mechanisms and control of rapid genomic changes in flax, Ann. Bot. (Oxford, U.K.), 2005, vol. 95, pp. 201–206.

    Article  CAS  Google Scholar 

  • De Vries, H., Mutationstheorie. Versuche und Beobachtungen uber die Entstehung der Arten im Pflanzenreich, Leipzig: Veit & Co., 1901, vol. 1.

    Book  Google Scholar 

  • De Vries, H., Die Mutationstheorie. Versuche und Beobachtungen uber die Entstehung der Arten im Pflanzenreich, Leipzig: Veit & Co., 1903, vol. 2.

    Google Scholar 

  • Dhruve, J.J., DNA: A Bridge between Biochemistry and Biotechnology, Delhi: New India Publ. Agency, 2008.

    Google Scholar 

  • Dix, P.J., Chilling resistance is not transmitted sexually in plants regenerated from Nicotiana sylvestris cell lines, Z. Pflanzenphysiol., 1977, vol. 84, no. 3, pp. 223–226.

    Article  Google Scholar 

  • Dubinin, N.P., Obshchaya genetika (General Genetics), Moscow: Nauka, 1976.

    Google Scholar 

  • Durrant, A., Induction and growth of flax genotrophe, Heredity, 1971, vol. 27, pp. 277–284.

    Article  Google Scholar 

  • Ehling, U.H., Comparison of radiation- and chemically-induced dominant lethal mutations in male mice, Mutat. Res., 1971, vol. 11, pp. 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Filipchenko, Yu.A., Izmenchivost’ i metody ee izucheniya (Variability and Its Study), Leningrad: Gos. Izd., 1926, 2nd ed.

    Google Scholar 

  • Filippo, J.S., Sung, P., and Klein, H., Mechanism of eukaryotic homologous recombination, Annu. Rev. Biochem., 2008, vol. 77, pp. 229–257.

    Article  Google Scholar 

  • Gaisinovich, A.E., Zarozhdenie i razvitie genetiki (Emergence and Development of Genetics), Moscow: Nauka, 1988.

    Google Scholar 

  • Genermont, J., A problem of dauermodifications in protists, Zh. Obshch. Biol., 1970, vol. 31, pp. 661–671.

    CAS  PubMed  Google Scholar 

  • Goday, C. and Esteban, M.R., Chromosome elimination in sciarid flies, Bioessays, 2001, vol. 23, pp. 242–250.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C., and Carroll, S.B., Introduction to Genetic Analysis, New York: W.H. Freeman & Company, 2007, 9th ed.

    Google Scholar 

  • Haber, J.E., Mating-type genes and MAT switching in Saccharomyces cerevisiae, Genetics, 2012, vol. 191, pp. 33–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris, S.L., Na, S., Zhu, X., et al., Dominant lethal mutations in the plasma membrane H+-ATPase gene of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 10531–10535.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson, I.R., Shindo, C., and Dean, C., The need for winter in the switch to flowering, Annu. Rev. Genet., 2003, vol. 37, pp. 371–392.

    Article  CAS  PubMed  Google Scholar 

  • Hershey, A.D. and Chase, M., Independent functions of viral protein and nucleic acid in growth of bacteriophage, J. Gen. Physiol., 1952, vol. 36, pp. 39–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt, R., Sauna, Z.E., Ambudkar, S.V., et al., Silent (synonymous) SNPs: should we care about them? Method. Mol. Biol., 2009, vol. 578, pp. 23–39.

    Article  CAS  Google Scholar 

  • Inge-Vechtomov, S.G., Mechanisms of modificational variability, Ekol. Genet., 2007, vol. 5, no. 1, pp. 21–24.

    Google Scholar 

  • Inge-Vechtomov, S.G., What do we know about variability? Ekol. Genet., 2010a, vol. 8, no. 4, pp. 4–9.

    Google Scholar 

  • Inge-Vechtomov, S.G., Genetika s osnovami selektsii (Genetics with Basics of Breeding), St. Petersburg: N-L, 2010b, 2nd ed.

    Google Scholar 

  • Inge-Vechtomov, S.G. and Repnevskaya, M.V., Phenotypic expression of primary lesions of genetic material in Saccharomyces yeast, Genome, 1989, vol. 31, pp. 497–502.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov, Yu.N., Estimation of the number of genic dominant lethal mutations in the genome of fruit fly D. melanogaster using ethylmethane sulphonate, Drosophila Inform. Serv., 1998, vol. 81, pp. 186–193.

    Google Scholar 

  • Johannsen, W., Elemente der exakten Erblichkeitslehre, Jena: Gustav Fischer, 1909.

    Google Scholar 

  • Kaeppler, S.M., Kaeppler, H.F., and Rhee, Y., Epigenetic aspects of somaclonal variation in plants, Plant Mol. Biol., 2000, vol. 43, pp. 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Kakutani, T., Munakata, K., Richards, E.J., and Hirochika, H., Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana, Genetics, 1999, vol. 151, pp. 831–838.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalisz, S. and Purugganan, M.D., Epialleles via DNA methylation: consequences for plant evolution, Trends Ecol. Evol., 2004, vol. 19, pp. 309–314.

    Article  PubMed  Google Scholar 

  • Karpechenko, G.D., Polyploid hybrids of Raphanus sativus L. and Brassica oleracea L., Tr. Prikl. Bot., Genet., Selekts., 1927, vol. 17, no. 3, pp. 306–408.

    Google Scholar 

  • Kimura, M., The Neutral Theory of Molecular Evolution, New York: Cambridge Univ. Press, 1983.

    Book  Google Scholar 

  • Kuhn, T., The Structure of Scientific Revolution, Chicago: Univ. of Chicago Press, 1973, 2nd ed.

    Google Scholar 

  • Kvitko, K.V. and Zakharov, I.A., Genetika mikroorganizmov (Genetics of Microorganisms), St. Petersburg: S.-Peterb. Gos. Univ., 2012.

    Google Scholar 

  • Lew, B.M., Mills, K.V., and Paulus, H., Characteristics of protein splicing in trans-mediated by a semisynthetic split intein, Pept. Sci., 1999, vol. 51, pp. 355–362.

    Article  CAS  Google Scholar 

  • Lobashev, M.E., Genetika (Genetics), Leningrad: Leningr. Gos. Univ., 1967.

    Google Scholar 

  • Loeb, L.A. and Cheng, K.C., Errors in DNA synthesis: a source of spontaneous mutations, Mutat. Res., 1990, vol. 238, pp. 297–304.

    Article  CAS  Google Scholar 

  • Luria, S.E., Viruses, cancer cells, and the genetic concept of virus infection, Cancer Res., 1960, vol. 20, pp. 677–688.

    CAS  PubMed  Google Scholar 

  • Lutz, A.M., A preliminary note on the chromosomes of Oenothera lamarckiana and one of its mutants, O. gigas, Science, 1907, vol. 26, pp. 151–152.

    Article  CAS  PubMed  Google Scholar 

  • Mackay, T.F., The genetic architecture of quantitative traits, Annu. Rev. Genet., 2001, vol. 35, pp. 303–339.

    Article  CAS  PubMed  Google Scholar 

  • Makhmudova, K.Kh., Bogdanova, E.D., Kirikovich, S.S., and Levites, E.V., Assessment of stability of features induced by Triton X-100 in soft wheat (Triticum aestivum L.), Vavilov. Zh. Genet. Selekts., 2012, vol. 16, no. 1, pp. 193–201.

    Google Scholar 

  • Manning, K., Tor, M., Poole, M., et al., A naturally occurring epigenetic mutation in a gene encoding an SBPbox transcription factor inhibits tomato fruit ripening, Nat. Genet., 2006, vol. 38, pp. 948–952.

    Article  CAS  PubMed  Google Scholar 

  • Marnett, L.J. and Plastaras, J.P., Endogenous DNA damage and mutation, Trends Genet., 2001, vol. 17, pp. 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Miguel, C. and Marum, L., An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond, J. Exp. Bot., 2011, vol. 62, pp. 3713–3725.

    Article  CAS  PubMed  Google Scholar 

  • Miraglia, L., Seiwert, S., Igel, A.H., and Ares, M., Jr., Limited functional equivalence of phylogenetic variation in small nuclear RNA: yeast U2 RNA with altered branchpoint complementarity inhibits splicing and produces a dominant lethal phenotype, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, pp. 7061–7065.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan, T.H., An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila, J. Exp. Zool., 1911, vol. 11, pp. 365–413.

    Article  Google Scholar 

  • Morgan, T.H., The Theory of the Gene, New Haven: Yale Univ. Press, 1926.

    Google Scholar 

  • Muller, H.J., The mechanism of crossing over, Am. Nat., 1916, vol. 50, pp. 193–221, 284–305, 350–366, 421–434.

    Article  Google Scholar 

  • Muller, F. and Tobler, H., Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens, Int. J. Parasitol., 2000, vol. 30, pp. 391–399.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, E., Watanabe, L.C., Ohlweiler, F.P., et al., Establishment of the dominant lethal test in the freshwater mollusk Biomphalaria glabrata (Say, 1818), Mutat. Res., 2003, vol. 536, pp. 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Portillo, F. and Serrano, R., Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis, EMBO J., 1988, vol. 7, pp. 1793–1798.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richards, E.J., Inherited epigenetic variation-revisiting soft inheritance, Nat. Rev. Genet., 2006, vol. 7, pp. 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, A.L. and Wolf, D.E., The role of epigenetics in plant adaptation, Trends Evol. Biol., 2012, vol. 4, pp. 19–25.

    Article  CAS  Google Scholar 

  • Sherman, F., Jackson, M., Liebman, S.W., et al., A deletion map of cyc1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast, Genetics, 1975, vol. 81, pp. 51–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith, G.R., Mechanism and control of homologous recombination in Escherichia coli, Annu. Rev. Genet., 1987, vol. 21, pp. 179–201.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, L. and Champness, W., Molecular Genetics of Bacteria, ASM Press, 2007, 3rd ed.

    Google Scholar 

  • Tchuraev, R.N., The frame of non-canonic theory of heredity: from genes to epigenes, Zh. Obshch. Biol., 2005, vol. 66, no. 2, pp. 99–122.

    Google Scholar 

  • The 1000 Genomes Project Consortium, A map of human genome variation from population-scale sequencing, Nature, 2010, vol. 467, pp. 1061–1073.

  • Thompson, A.J. and Herrin, D.L., A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8S rRNA: implication for intron-mediated RNA recombination, intron transposition and 5.8S rRNA structure, J. Mol. Biol., 1994, vol. 236, pp. 455–468.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J., Kim, D.F., O’Connor, M., et al., Analysis of mutations at residues A2451 and G2447of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 9002–9007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tikhodeyev, O.N., Crisis of the traditional variability concept: on the way to a new paradigm, Ekol. Genet., 2012, vol. 10, no. 4, pp. 56–65.

    Google Scholar 

  • Tikhodeyev, O.N., Classification of variability forms based on phenotype determining factors: Traditional views and their revision, Ekol. Genet., 2013, vol. 11, no. 3, pp. 79–92.

    Google Scholar 

  • Tuite, M.F., Mundy, C.R., and Cox, B.S., Agents that cause a high frequency of genetic change from [psi+] to [psi−] in Saccharomyces cerevisiae, Genetics, 1981, vol. 98, pp. 691–711.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Twyman, R., Mutation or polymorphism? 2003. http://genome.wellcome.ac.uk/doc_WTD020780.html

    Google Scholar 

  • Vatti, K.V. and Tikhomirova, M.M., Spontaneous and radiation-induced dominant lethal mutations of Drosophila males and females, in Issledovaniya po genetike (Genetic Studies), Leningrad: Leningr. Gos. Univ., 1976, no. 6, pp. 32–43.

    Google Scholar 

  • Voelker, L.L. and Dybvig, K., Transposon mutagenesis, Method. Mol. Biol., 1998, vol. 104, pp. 235–238.

    CAS  Google Scholar 

  • Walbot, V., Saturation mutagenesis using maize transposons, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Watson, J.D., Baker, T.A., Bell, S.P., et al., Molecular Biology of the Gene, Pearson: Benjamin/Cummings, 2004, 5th ed.

    Google Scholar 

  • Watson, J.D. and Crick, F.H.C., A structure of deoxyribonucleicacid, Nature, 1953, vol. 171, pp. 964–967.

    Article  CAS  PubMed  Google Scholar 

  • Wickner, R.B., Taylor, K.L., Edskes, H.K., et al., Prions in Saccharomyces and Podospora spp.: protein-based inheritance, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 844–861.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhimulev, I.F., Obshchaya i molekulyarnaya genetika (General and Molecular Genetics), Novosibirsk: Novosib. Gos. Univ., 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Tikhodeyev.

Additional information

Original Russian Text © O.N. Tikhodeyev, 2014, published in Uspekhi Sovremennoi Biologii, 2014, Vol. 134, No. 4, pp. 350–362.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhodeyev, O.N. Crisis of the term “mutation” and its resolution in the context of the differential concept of variability. Biol Bull Rev 5, 119–129 (2015). https://doi.org/10.1134/S2079086415020103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086415020103

Keywords

Navigation