Skip to main content
Log in

Electropulse (Spark) Plasma Sintering of Ultrafine-Grained WC–Al2O3 Ceramics

  • NEW TECHNOLOGIES FOR OBTAINING AND PROCESSING MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—

The sintering mechanisms of WC–Al2O3 nanopowder compositions with different contents of al-umina particles (1, 3, and 5 wt %) have been studied. The samples of WC–Al2O3 ceramics are obtained by electropulse (spark) plasma sintering (SPS) in vacuum by heating to a temperature of 1450°C at a rate of 50°C/min under a uniaxial stress of 70 MPa. Plasma-chemical nanopowders of tungsten monocarbide and submicron powders of alumina are used to fabricate the ceramics. The density, microstructure, phase composition, microhardness (HV), and crack resistance (KIC) of the ceramics have been studied. It has been shown that the use of SPS enables the production of WC-Al2O3 ceramics with a high relative density (95.4–98.1%) and a homogeneous microstructure with the ultrafine grain size (0.1–0.2 μm). The X-ray phase analysis has shown that during the SPS of WC–Al2O3 ceramics the formation of undesirable W2C phase occurs which results in a decrease in the crack resistance. To reduce the intensity of formation of W2C particles, free carbon in the form of colloidal graphite (0.1, 0.2, and 0.3 wt %) is introduced into the WC–Al2O3 ceramic. Using the Young–Cutler model and the model of diffusion resorption of pores it has been shown that the main mechanism behind the SPS of WC–Al2O3 ceramics is a grain-boundary diffusion. It has been found that the introduction of graphite leads to a decrease in the activation energy of SPS of the WC–Al2O3 ceramics, which is probably due to a reduction in the W2C particle content to 0.5 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Sun, J., Zhao, J., Huang, Z., et al., A review on binderless tungsten carbide: Development and application, Nano-Micro Lett., 2020, vol. 12, p. 13. https://doi.org/10.1007/s40820-019-0346-1

    Article  CAS  Google Scholar 

  2. Cha, S.I. and Hong, S.H., Microstructures of binderless tungsten carbides sintered by spark plasma sintering process, Mater. Sci. Eng., A, 2003, vol. 356, nos. 1–2, pp. 381–389.

  3. Chuvil’deev, V.N., Blagoveshchenskiy, Yu.V., Nokh-rin, A.V., et al., Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis, J. Alloys Compd., 2017, vol. 708, pp. 547–561.

    Article  Google Scholar 

  4. Panov, V.S. and Chuvilin, A.M., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh (Technology and Properties of Sintered Hard Alloys and Their Products), Moscow: Nat. Univ. Sci. Technol. MISiS, 2001.

  5. Kurlov, A.S. and Gusev, A.I., Tungsten Carbides: Structure, Properties and Application in Hardmetals, Cham: Springer, 2013.

    Book  Google Scholar 

  6. Wachowicz, J., Dembiczak, T., Stradomski, G., et al., Properties of WCCo composites produced by the SPS method intended for cutting tools for machining of wood-based materials, Materials, 2021, vol. 14, no. 10, p. 2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng, D., Li, X., Li, Y., et al., ZrO2 (3Y) toughened WC composites prepared by spark plasma sintering, J. Alloys Compd., 2013, vol. 572, pp. 62–67.

    Article  CAS  Google Scholar 

  8. Wang, J., Zuo, D., Zhu, L., et al., Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2018, vol. 71, pp. 167–174.

    Article  CAS  Google Scholar 

  9. Ren, X., Peng, Z., Wang, Ch., et al., Effect of ZrC nano-powder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2015, vol. 48, pp. 398–407.

    Article  CAS  Google Scholar 

  10. Zhang, X., Zhu, S., Shi, T., et al., Preparation, mechanical and tribological properties of WC–Al2O3 composite doped with graphene platelets, Ceram. Int., 2020, vol. 46, no. 8, pp. 10457–10468.

    Article  CAS  Google Scholar 

  11. Poetschke, J., Richter, V., and Holke, R., Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 218–223.

    Article  CAS  Google Scholar 

  12. Su, Q., Zhu, S., Ding, H., et al., Effect of the additive VC on tribological properties of WC–Al2O3 composites, Int. J. Refract. Met. Hard Mater., 2018, vol. 75, pp. 111–117.

    Article  CAS  Google Scholar 

  13. Blagoveshchensky, Yu.V., Alexeev, N.V., Samokhin, A.V., et al., Effect of the conditions of formation of W–C nanopowders in a plasma jet on the synthesis of hexagonal tungsten carbide, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 3, pp. 566–571. https://doi.org/10.1134/S2075113319030043

    Article  Google Scholar 

  14. Isaeva, N.V., Blagoveshchenskii, Yu.V., Blagoveshchenskaya, N.V., et al., Preparation of nanopowders of carbides and hard-alloy mixtures applying low-temperature plasma, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 6, pp. 585–591. https://doi.org/10.3103/S1067821214060108

    Article  Google Scholar 

  15. Blagoveshchenskiy, Yu.V., Isaeva, N.V., Sinaiskiy, M.A., et al., Tuning the properties of refractory carbide nanopowders, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 5, pp. 924–929. https://doi.org/10.1134/S2075113318050039

    Article  Google Scholar 

  16. Tokita, M., Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization, Ceramics, 2021, vol. 4, no. 2, pp. 160–198. https://doi.org/10.3390/ceramics4020014

    Article  CAS  Google Scholar 

  17. Olevsky, E.A. and Dudina, D.V., Field-Assisted Sintering: Science and Applications, Cham: Springer, 2018.

    Book  Google Scholar 

  18. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation materials: A review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, no. 3, pp. 763–777.

    Article  CAS  Google Scholar 

  19. Lantsev, E.A., Malekhonova, N.V., Tsvetkov, Yu.V., et al., Investigation of aspects of high-speed sintering of plasma-chemical nanopowders of tungsten carbide with higher content of oxygen, Inorg. Mater.: Appl. Res., 2021, vol. 12, no. 3, pp. 650–663. https://doi.org/10.1134/S2075113321030242

    Article  Google Scholar 

  20. Zheng, D., Li, X., Ai, X., et al., Bulk WC–Al2O3 composites prepared by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2012, vol. 30, pp. 51–56.

    Article  CAS  Google Scholar 

  21. Chen, W.-H., Lin, H.-T., Nayak, P.K., et al., Sintering behavior and mechanical properties of WC–Al2O3 composites prepared by spark plasma sintering (SPS), Int. J. Refract. Met. Hard Mater., 2015, vol. 48, pp. 414–417.

    Article  CAS  Google Scholar 

  22. Silva, M.C.L., Leite, M.M.B., Raimundo, R.A., et al., Consolidation and mechanical properties of WC–Al2O3 composite prepared via high energy ball milling and spark plasma sintering, Ceram. Int., 2022, vol. 48, no. 13, pp. 19026–19035.

    Article  CAS  Google Scholar 

  23. Chuvil’deev, V.N., Boldin, M.S., Dyatlova, Ya.G., et al., Comparative study of hot pressing and high-speed electropulse plasma sintering of Al2O3/ZrO2/Ti(C,N) powders, Russ. J. Inorg. Chem., 2015, vol. 60, no. 8, pp. 987–993. https://doi.org/10.1134/S0036023615080057

    Article  CAS  Google Scholar 

  24. Andreev, P.V., Smetanina, K.E., and Lantsev, E.A., X‑ray powder diffraction analysis of a tungsten carbide-based ceramic, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 558, p. 012003. https://doi.org/10.1088/1757-899X/558/1/012003

  25. Lantsev, E.A., Malekhonova, N.V., Chuvil’deev, V.N., et al., Study of high-speed sintering of fine-grained hard alloys based on tungsten carbide with ultralow cobalt content: Part I. Pure tungsten carbide, Inorg. Mater.: Appl. Res., 2022, vol. 13, no. 3, pp. 761–774. https://doi.org/10.1134/S2075113322030236

    Article  Google Scholar 

  26. Krasovskii, P.V., Malinovskaya, O.S., Samokhin, A.V., et al., XPS study of surface chemistry of tungsten carbides nanopowders produced through DC thermal plasma/hydrogen annealing process, Appl. Surf. Sci., 2015, vol. 339, pp. 46–54.

    Article  CAS  Google Scholar 

  27. Krasovskii, P.V., Blagoveshchenskii, Yu.V., and Grigorovich, K.V., Determination of oxygen in W–C–Co nanopowders, Inorg. Mater., 2008, vol. 44, no. 9, pp. 954–959. https://doi.org/10.1134/S0020168508090100

    Article  CAS  Google Scholar 

  28. Blagoveshchenskiy, Yu.V., Isaeva, N.V., Lantsev, E.A., et al., Spark plasma sintering of WC–10Co nanopowders with various carbon content obtained by plasma-chemical synthesis, Inorg. Mater.: Appl. Res., 2021, vol. 12, no. 2, pp. 528–537. https://doi.org/10.1134/S207511332102009X

    Article  Google Scholar 

  29. Lantsev, E.A., Chuvil’deev, V.N., Nokhrin, A.V., et al., Kinetics of spark plasma sintering of WC–10% Co ultrafine-grained hard alloy, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 3, pp. 586–597. https://doi.org/10.1134/S2075113320030284

    Article  Google Scholar 

  30. Rahaman, M.N., Ceramic Processing and Sintering, New York: Marcel Dekker, 2003.

    Google Scholar 

  31. Young, W.S. and Culter, I.B., Initial sintering with constant rates of heating, J. Am. Ceram. Soc., 1970, vol. 53, no. 12, pp. 659–663.

    Article  CAS  Google Scholar 

  32. Nanda Kumar, A.K., Watabe, M., and Kurokawa, K., The sintering kinetics of ultrafine tungsten carbide powders, Ceram. Int., 2011, vol. 37, no. 7, pp. 2643–2654.

    Article  Google Scholar 

  33. Buhsmer, C.P. and Crayton, P.H., Carbon self-diffusion in tungsten carbide, J. Mater. Sci., 1971, vol. 6, no. 7, pp. 981–988.

    Article  CAS  Google Scholar 

  34. Kurlov, A.S. and Gusev, A.I., Vacuum annealing of nanocrystalline WC powders, Inorg. Mater., 2012, vol. 48, no. 7, pp. 680–690. https://doi.org/10.1134/S0020168512060088

    Article  CAS  Google Scholar 

  35. Boldin, M., Popov, A., Lantsev, E., et al., Investigation of the densification behavior of alumina during Spark Plasma Sintering, Materials, 2022, vol. 15, no. 6, p. 2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boldin, M.S., Popov, A.A., Nokhrin, A.V., et al., Effect of grain boundary state and grain size on the microstructure and mechanical properties of alumina obtained by SPS: A case of the amorphous layer on particle surface, Ceram. Int., 2022, vol. 48, no. 18, pp. 25723–25740.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The TEM studies of microstructures were performed using the facilities of the Center for Collective Use “Materials Science and Metallurgy” at the National University of Science and Technology “MISIS” and were supported by the Russian Ministry of Science and Higher Education, project no. 075-15-2021-696.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-33-90214.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Lantsev, A. V. Nokhrin, M. S. Boldin, K. E. Smetanina, A. A. Murashov, Yu. V. Blagoveshchenskii, N. V. Isaeva, G. V. Shcherbak, V. N. Chuvil’deev, N. Yu. Tabachkova or A. V. Terentyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lantsev, E.A., Nokhrin, A.V., Boldin, M.S. et al. Electropulse (Spark) Plasma Sintering of Ultrafine-Grained WC–Al2O3 Ceramics. Inorg. Mater. Appl. Res. 14, 1441–1450 (2023). https://doi.org/10.1134/S2075113323050234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050234

Keywords:

Navigation