Skip to main content
Log in

Ferromagnetism of Graphite Nanopowders with Cobalt Oxide Impurity and Its Evolution at Moderate Annealing

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A study of the influence of a small impurity of cobalt oxide CoO on the magnetic properties of graphite nanopowder is presented in this article. It is shown that such an impurity is responsible for the weak ferromagnetism of a sample freshly prepared and annealed at 670 K in air, which substantially increases after vacuum annealing. The effect of an exchange bias caused by the partial reduction of antiferromagnetic CoO particles to metallic cobalt, which is a ferromagnet, is discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kopelevich, Y., Esquinazi, P., Torres, J.H.S., and Moehlecke, S., Ferromagnetic- and superconducting-like behavior of graphite, J. Low Temp. Phys., 2000, vol. 5, no. 119, pp. 691–702.

    Article  Google Scholar 

  2. Esquinazi, P., Setzer, A., Höhne, R., Semmelhack, C., Kopelevich, Y., Spemann, D., Butz, T., Kohlst-runk, B., and Lösche, M., Ferromagnetism in oriented graphite samples, Phys. Rev. B, 2002, vol. 66, no. 2, p. 024429.

  3. Wang, Y., Huang, Y., Song, Y., Zhang, X., Ma, Y., Liang, J., and Chen, Y., Room-temperature ferromagnetism of graphene, Nano Lett., 2009, vol. 9, no. 1, pp. 220–224.

    Article  CAS  PubMed  Google Scholar 

  4. Fayazi, M., Liu, B., Lei, L., Shuai, G., Odunm-baku, O., Wang, S., He, Y., and Boi, F.S., Ferromagnetic hysteresis and structural recrystallization in turbostratic graphite, Mater. Res. Express, 2019, vol. 6, no. 10, p. 105612.

  5. Miao, X., Tongay, S., and Hebard, A.F., Extinction of ferromagnetism in highly ordered pyrolytic graphite by annealing, Carbon, 2012, vol. 50, no. 4, pp. 1614–1618.

    Article  CAS  Google Scholar 

  6. Haruyama, J., Graphene and graphene nanomesh spintronics, Electronics, 2013, vol. 2, no. 4, pp. 368–386.

    Article  CAS  Google Scholar 

  7. Saad, M., Gilmutdinov, I.F., Rogov, A.M., Nikitin, S.I., Tayurskii, D.A., and Yusupov, R.V., Ferromagnetism and persistent currents in finely dispersed highly oriented pyrolytic graphite samples, Russ. Phys. J., 2018, vol. 61, no. 7, pp. 1247–1251.

    Article  CAS  Google Scholar 

  8. Wang, C. and Diao, D., Magnetic behavior of graphene sheets embedded carbon film originated from graphene nanocrystallite, Appl. Phys. Lett., 2013, vol. 102, no. 5, p. 052402.

  9. Saad, M., Gilmutdinov, I.F., Kiiamov, A.G., Tayurskii, D.A., Nikitin, S.I., and Yusupov, R.V., Observation of persistent currents in finely dispersed pyrolytic graphite, JETP Lett., 2018, vol. 107, no. 1, pp. 42–46.

    Article  Google Scholar 

  10. Wood, R.A., Lewis, M.H., Lees, M.R., Benning-ton, S.M., Cain, M.G., and Kitamura, N., Ferromagnetic fullerene, J. Phys.: Condens. Matter, 2002, vol. 14, no. 22, p. L385.

    CAS  Google Scholar 

  11. Ma, Y.W., Lu, Y.H., Yi, J.B., Feng, Y.P., Herng, T.S., Liu, X., Gao, D.Q., Xue, D.S., Xue, J.M., Ouy-ang, J.Y., and Ding, J., Room temperature ferromagnetism in Teflon due to carbon dangling bonds, Nat. Commun., 2012, vol. 3, no. 1, pp. 1–8.

    Article  Google Scholar 

  12. Milev, A., Dissanayake, D.M.A.S., Kannangara, G.S.K., and Kumarasinghe, A.R., Defect induced electronic states and magnetism in ball-milled graphite, Phys. Chem. Chem. Phys., 2013, vol. 15, no. 38, pp. 16294–16302.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, S., Xia, J.H., Srikanth, V.V., Sun, X., Staedler, T., Jiang, X., Yang, F., and Zhang, Z.D., Magnetism of amorphous carbon nanofibers, Appl. Phys. Lett., 2009, vol. 95, no. 26, p. 263105.

  14. Sharpe, A.L., Fox, E.J., Barnard, A.W., Finney, J., Watanabe, K., Taniguchi, T., Kastner, M.A., and Goldhaber-Gordon, D., Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene, Science, 2019, vol. 365, no. 6453, pp. 605–608.

    Article  CAS  PubMed  Google Scholar 

  15. Yazyev, O.V., Emergence of magnetism in graphene materials and nanostructures, Rep. Prog. Phys., 2010, vol. 73, no. 5, p. 056501.

  16. Magda, G.Z., Jin, X., Hagymási, I., Vancsó, P., Osváth, Z., Nemes-Incze, P., Hwang, C., Biro, L.P., and Tapaszto, L., Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature, 2014, vol. 514, no. 7524, pp. 608–611.

    Article  CAS  PubMed  Google Scholar 

  17. Sepioni, M., Nair, R.R., Tsai, I.L., Geim, A.K., and Grigorieva, I.V., Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite, Europhys. Lett., 2012, vol. 97, no. 4, p. 47001.

    Article  Google Scholar 

  18. Morales, C., Díaz-Fernández, D., Prieto, P., Lu, Y.H., Kersell, H., del Campo, A., Escudero, C., Pérez-Dieste, V., Ashby, P., Méndez, J., and Soriano, L., In-situ study of the carbon gasification reaction of highly oriented pyrolytic graphite promoted by cobalt oxides and the novel nanostructures appeared after reaction, Carbon, 2020, vol. 158, pp. 588–597.

    Article  CAS  Google Scholar 

  19. Meiklejohn, W.H. and Bean, C.P., New magnetic anisotropy, Phys. Rev., 1956, vol. 102, no. 5, p. 1413.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.M. Rogov and V.G. Evtyugin for the characterization of the samples using electron microscopy.

Funding

The study was carried out at the expense of a subsidy allocated to Kazan Federal University for the fulfillment of the state task in the field of scientific activity no. FZSM-2020-0050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saad.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, M., Kiiamov, A.G., Nikitin, S.I. et al. Ferromagnetism of Graphite Nanopowders with Cobalt Oxide Impurity and Its Evolution at Moderate Annealing. Inorg. Mater. Appl. Res. 14, 118–122 (2023). https://doi.org/10.1134/S207511332301032X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511332301032X

Keywords:

Navigation