Skip to main content
Log in

The Investigation of the Dependence of Optical, Luminescent, and Emission Properties of Carbon Nanoparticles on pH of the Medium

  • PHYSICOCHEMICAL PRINCIPLES OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of pH of the medium on the optical, luminescent, and emission parameters of various types of carbon nanoparticles (CNPs) in aqueous solutions is studied. It is shown that the parameters of the optical absorption and photoluminescence spectra, as well as the value and stability of the quantum yield of emission, significantly depend on the value of pH of the medium and the properties of the functional groups and carbon cores of the carbon nanoparticles. The main contribution to the change in the specified parameters of carbon nanoparticles is made by their functional groups. The strongest and most vivid change in the optical and luminescent parameters of all the types of carbon nanoparticles is observed in the ranges of pH of an aqueous solution of 10–13 and 0.1–3. The change in the parameters of carbon nanoparticles is closely related to the processes of protonation and deprotonation of the functional groups of the particles of the CNPs–COOH, CNPs–OH, and CNPs–NH2 types as well as to photostimulated processes. A growth and a decline in the absorption and emission, appearance and disappearance of absorption bands, change in the symmetry and width of the contours, and also the bathochromic and hypsochromic shifts of the absorption and photoluminescence bands are often observed in the absorption and photoluminescence spectra with the change in pH of the medium of carbon nanoparticles. It is shown that the mechanism of the effect of nitrogen and oxygen heteroatoms of the functional groups on the photoluminescence and quantum yield of emission is associated with the complex interactions of the electrons of the unshared pairs of the N and O atoms with the π-system of the aromatic rings of the carbon core of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yang, N., Jiang, X., and Pang, D.W., Carbon Nanoparticles and Nanostructures, New York: Springer-Verlag, 2016. ISBN 978-3-319-28780-5

    Book  Google Scholar 

  2. Li, H., Kang, Z., Liu, Y. and Lee, S.-T., Carbon nanodots: synthesis, properties and applications, J. Mater. Chem., 2012, vol. 22, no. 46, pp. 24230–24253.

    Article  CAS  Google Scholar 

  3. Wang, Y. and Hu, A., Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C, 2014, vol. 2, pp. 6921–6939.

    Article  CAS  Google Scholar 

  4. Li, X., Zhang, S., Kulinich, S. A., Liu, Y., and Zeng, H., Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection, Sci Rep., 2014, vol. 4, p. 4976. https://doi.org/10.1038/srep.04976

    Article  CAS  PubMed Central  Google Scholar 

  5. Singh Rana, P.J., Singh, P., and Kar, P., Carbon nanoparticles for ferric ion detection and novel HFCNs–Fe3+ composite for NH3 and F-estimation based on a ‘TURN ON’ mechanism, J. Mater. Chem. B, 2016, vol. 4, pp. 5929–5937.

    Article  CAS  Google Scholar 

  6. Shao, J., Zhu, S., Liu, H., Song, Y., Tao, S., and Yang, B., Full color emission polymer carbon dots with quenchresistant solid-state fluorescence, Adv. Sci., 2017, vol. 4, art. ID 1700395.

    Article  Google Scholar 

  7. Sarkar, S., Sudolská, M., Dubecký, M., Reckmeier, C.J., Rogach, A.L., Zbořil, R., and Otyepka, M., Graphitic nitrogen doping in carbon dots causes red-shifted absorption, J. Phys. Chem. C, 2016, vol. 120, pp. 1303–1308.

    Article  CAS  Google Scholar 

  8. Holá, K., Sudolská, M., Kalytchuk, S., Nachtigallová, D., Rogach, A.L., Otyepka, M., and Zbořil, R., Graphitic nitrogen triggers red fluorescence in carbon dots, ACS Nano, 2017, vol. 11, no. 12, pp. 12402–12410.

  9. Song, Z., Quan, F., Xu, Y., Liu, M., Liang, C.L., and Liu, J., Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione, J. Carbon, 2016, vol. 104, pp. 169–178.

  10. Kazaryan, S.A. and Starodubtsev, N.F., Theoretical and experimental research of luminescent properties of nanoparticles, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 151–161.

  11. Liu, Q., Li, D., Zhu, Z., Yu, S., Zhang, Y., Yu, D., and Jiang, Y., N-Doped carbon dots from phenol derivatives for excellent color rendering WLEDs, RSC Adv., 2018, vol. 8, pp. 4850–4856.

    Article  CAS  Google Scholar 

  12. Zhu, C., Yang, S., Wang, G., Mo, R., He, P., Sun, J., Di, Z., Yuan, N., Ding, J., Ding, G., and Xie, X., Negative induction effect of “graphite” N on graphene quantum dots: tunable band gap photoluminescence, J. Mater. Chem. C, 2015, vol. 3, no. 34, pp. 8810–8816.

    Article  CAS  Google Scholar 

  13. Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., and Yang, B., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots and polymer dots): current state and future perspective, Nano Res., 2015, vol. 8, pp. 355–381.

    Article  CAS  Google Scholar 

  14. Sun, Z., Li, X., Wu, Y., Wei, C., and Zeng, H., Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups, New J. Chem., 2018, vol. 42, pp. 4603–4611.

    Article  CAS  Google Scholar 

  15. Dhenadhayalan, N. and Lin, K.-C., Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation, Sci. Rep., 2015, vol. 5, art. ID 10012. https://doi.org/10.1038/srep10012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Atchudan, R., Edison, T.N.J.I., Aseer, K.R., Perumal, A., Karthik, N., and Lee, Y.R., Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink, J. Biosens. Bioelectron., 2018, vol. 99, pp. 303–311.

    Article  CAS  Google Scholar 

  17. Sciortino, A., Mauro, N., Buscarino, G., Sciortino, L., Popescu, R., Schneider, R., Giammona, G., Gerthsen, D., Cannas, M., and Messina, F., β-C3N4 Nanocrystals: carbon dots with extraordinary morphological, structural, and optical homogeneity, Chem. Mater., 2018, vol. 30, pp. 1695–1700.

    Article  CAS  Google Scholar 

  18. Hasan, M.T., Gonzalez-Rodriguez, G., Ryan, C., Pota, K., Green, K., Coffer, J.L., and Naumov, A.V., Nitrogen-doped graphene quantum dots: optical properties modification and photovoltaic applications, Nano Res., 2019. https://doi.org/10.1007/s12274-019-2337-4

  19. Ding, H., Wei, J.-S., Zhang, P., Zhou, Z.-Y., Gao, Q.-Y., and Xiong, H.-M., Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths, Small, 2018, vol. 14, no. 22, pp. 1800612–1800622.

    Article  Google Scholar 

  20. Liu, J., Li, D., Zhang, K., Yang, M., Sun, H., and Yang, B., One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging, Small, 2018, vol. 14, no. 15, pp. 1703919–1703929.

    Article  Google Scholar 

  21. Ding, H., Wei, J.-S., Zhong, N., Gao, Q.-Y., and Xiong, H.-M., Highly efficient red-emitting carbon dots with gramscale yield for bioimaging, Langmuir, 2017, vol. 33, no. 44, pp. 12635–12642. https://doi.org/10.1021/acs.langmuir.7b02385

    Article  CAS  PubMed  Google Scholar 

  22. Huo, P., Zhao, P., Wang, Y., Liu, B., Yin, G., and Dong, M., A roadmap for achieving sustainable energy conversion and storage: graphene-based composites used both as an electrocatalyst for oxygen reduction reactions and an electrode material for a supercapacitor, Energies, 2018, vol. 11, no. 1, p. 167. https://doi.org/10.3390/en11010167

    Article  Google Scholar 

  23. Li, C., Wu, W., Wang, P., Zhou, W., Wang, J., Chen, Y., Fu L., Zhu, Y., Wu, Y., and Huang, W., Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline–acidic electrolyte, Adv. Sci., 2019, vol. 6, no. 1, art. ID 1801665. https://doi.org/10.1002/advs.201801665

    Article  CAS  Google Scholar 

  24. Ghosh, T., Ghosh, R., Basak, U., Majumdar, S., Ball, R., Mandal, D., Nandi, A.K., and Chatterjee, D.P., Candle soot derived carbon nanodot/polyaniline hybrid materials through controlled grafting of polyaniline chains for supercapacitors, J. Mater. Chem. A, 2018, vol. 6, pp. 6476–6492.

    Article  CAS  Google Scholar 

  25. Zhang, A., Li, A., Wang, Y., Liu, M., Ma, H., Song, Z., and Liu, J., Controllable synthesis of mesoporous carbon nanoparticles based on PAN-b-PMMA diblock copolymer micelles generated via RAFT polymerization as electrode materials for supercapacitors, RSC Adv., 2016, vol. 6, pp. 103843–103850.

    Article  CAS  Google Scholar 

  26. Bhattacharyya, S., Ehrat1, F., Urban, P., Teves, R., Wyrwich, R., Döblinger, M., Feldmann, J., Urban, A.S., and Stolarczyk, J.K., Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots, Nat. Commun., 2017, vol. 8, art. ID 1401. https://doi.org/10.1038/s41467-017-01463-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arul, V. and Sethuraman, M.G., Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications, Opt. Mater., 2018, vol. 78, pp. 181–190.

    Article  CAS  Google Scholar 

  28. Wang, A., Kang, F., Wang, Z., Shao, Q., Li, Z., Zhu, G., Lu, J., and Li, Y., Facile synthesis of nitrogen-rich carbon dots as fertilizers for mung bean sprouts, Adv. Sustainable Syst., 2018, vol. 3, no. 3, art. ID 1800132.

  29. Das, A., Roy, D., Mandal, M., Jaiswal, C., Ta, M., and Mandal, P.K., Carbon dot with pH independent nearunity photoluminescence quantum yield in an aqueous medium: electrostatics-induced Förster resonance energy transfer at submicromolar concentration, J. Phys. Chem. Lett., 2018, vol. 9, pp. 5092–5099.

    Article  CAS  Google Scholar 

  30. Liu, H., Li, Z., Sun, Y., Geng, X., Hu, Y., Meng, H., Ge, J., and Qu, L., Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptorpositive cancer cell targetability, Sci. Rep., 2018, col. 8, art. ID 1086. https://doi.org/10.1038/s41598-018-19373-3

  31. Bharathi,1 D., Siddlingeshwar, B., Krishna, R.H., Singh, V., Kottam, N., Darshan Devang Divakar, D.D., and Alkheraif, A.A., Green and cost effective synthesis of fluorescent carbon quantum dots for dopamine detection, J. Fluoresc., 2018, vol. 28, no. 2, pp. 573–579.

  32. Zhang, Y., Yuan, R., He, M., Hu, G., Jiang, J., Xu, T., Zhou, L., Chen, W., Xiang, W., and Liang, X., Multicolour nitrogen-doped carbon: tuneable photoluminescence and sandwich fluorescent glass-based light-emitting diodes, Nanoscale, 2017, vol. 9, pp. 17849–17858.

    Article  CAS  Google Scholar 

  33. Jin, S.H., Kim, D.H., Jun, G.H., Hong, S.H., and Jeon, S., Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups, ACS Nano, 2013, vol. 7, no. 2, pp. 1239–1245.

    Article  CAS  Google Scholar 

  34. Sachdev, A., Mataia, I., and Gopinath, P., Implications of surface passivation on physicochemical and bioimaging properties of carbon dots, RSC Adv., 2014, vol. 4, pp. 20915–20921.

    Article  CAS  Google Scholar 

  35. Chen, Y., Yang, Q., Xu, P., Sun, L., Sun, D., and Zhuo, K., One-step synthesis of acidophilic highlyphotoluminescent carbon dots modified by ionic liquid from polyethylene glycol, ACS Omega, 2017, vol. 2, pp. 5251–5259.

    Article  CAS  Google Scholar 

  36. Xu, Q., Liu, Y., Gao, C., Wei, J., Zhou, H., Chen, Y., Dong, C., Sreeprasad, T.S., Li, N., and Xia, Z., Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots, J. Mater. Chem. C, 2015, vol. 3, p. 9885.

    Article  CAS  Google Scholar 

  37. Zhu, S., Zhang, J., Tang, S., Qiao, C., Wang, L., Wang, H., Liu, X., Li, B., Li, Y., Yu, W., Wang, X., Sun H., and Yang B., Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater., 2012, vol. 22, pp. 4732–4740.

    Article  CAS  Google Scholar 

  38. Sun, D., Ban, R., Zhang, P.-H., Wu, G.-H., Zhang, J.-R., and Zhu, J.-J., Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties, J. Carbon, 2013, vol. 64, pp. 424–434.

    Article  CAS  Google Scholar 

  39. Amin, N., Afkhami, A., and Madrakian, T., Construction of a novel “Off-On” fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogendoped carbon dots, J. Luminesc., 2018, vol. 194, pp. 768–777.

    Article  CAS  Google Scholar 

  40. Kazaryan, S.A., Nevolin, V.N., and Starodubtsev, N.F., Synthesis and study of new luminescent carbon particles with high emission quantum yield, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 2, pp. 271–284.

    Article  Google Scholar 

  41. Terenin, A.N., Absorption spectra of electrolyte solutions, Usp. Fiz. Nauk, 1937, vol. 17, no. 1, pp. 1–54.

    Article  CAS  Google Scholar 

  42. Hoo Van Nguyen, Naing Min Tun, Kryukov, A.Yu., Izvol’skii, I.M., and Rakov, E.G., Dependence of the “solubility” of oxidized carbon nanomaterials on the acidity of aqueous solutions, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 9, pp. 1559–1563.

    Article  Google Scholar 

  43. Kazaryan, S.A. and Starodubtsev, N.F., Study of the optical and luminescent properties of carbon nanoparticles using the microphotoluminescence method, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 2, pp. 243–256.

    Article  Google Scholar 

  44. Stroyuk, A.L., Andryushina, N.S., Shcherban’, N.D., Il’in, V.G., Efanov, V.S., Yanchuk, I.B., and Pokhodenko, V.D., Photochemical reduction of graphite oxide in a colloidal solution, Theor. Exp. Chem., 2012, vol. 48, no. 1, pp. 2–13.

    Article  CAS  Google Scholar 

  45. Koreneva, L.G., Zolin, V.F., and Davydov, B.L., Nelineinaya optika molekulyarnykh kristallov (Nonlinear Optics of Molecular Crystals), Moscow: Nauka, 1985.

  46. Fedorov, A.V., Baranov, A.V., Orlova, A.O., and Maslov, V.G., Osnovy fiziki gibridnykh nanostruktur (Fundamentals of Physics of Hybrid Nanostructures), St. Petersburg: Nats. Issled. Univ. Inf. Tekhnol., Mekh., Opt., 2014.

  47. Krishnamoorthy, K., Kim, G.S., and Kim, S.J., Graphene nanosheets: ultrasound assisted synthesis and characterization, Ultrason. Sonochem., 2013, vol. 20, pp. 644–649.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Ph.D. (Phys.–Math.) A.M. Gukasyan for the participation in the discussion of the obtained experimental results on the luminescence of the CNP materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Kazaryan, V. N. Nevolin, G. G. Kharisov or N. F. Starodubtsev.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazaryan, S.A., Nevolin, V.N., Kharisov, G.G. et al. The Investigation of the Dependence of Optical, Luminescent, and Emission Properties of Carbon Nanoparticles on pH of the Medium. Inorg. Mater. Appl. Res. 11, 1025–1040 (2020). https://doi.org/10.1134/S2075113320050172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320050172

Keywords:

Navigation