Skip to main content
Log in

Scientific and Technological Bases for Developing Cold-Resistant Steel with a Guaranteed Yield Strength of 315–750 MPa for Arctic Conditions. Part 1: Alloying Principles and Requirements for Sheet Product Structure

  • METAL SCIENCES. METALLURGY
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—The results obtained upon choosing rational alloying and microalloying for cold-resistant steels with a guaranteed yield strength of 315–750 MPa on the basis of established interrelations between phase transformations, structure, mechanical properties, serviceability parameters, and the content of main alloying elements are presented. Quantitative requirements for various structural parameters and their maximum permissible difference throughout sheet product thickness up to 100 mm have been developed, depending on the strength category and manufacturing technology (thermomechanical treatment with accelerated cooling, quenching from separate furnace heating or rolling heating with high temperature tempering) to provide guaranteed characteristics of strength, cold resistance (impact energy KV at a testing temperature from –60 to –80°С, critical ductile-to-brittle transition temperature Тkb, and nil ductility temperature NDT), and crack resistance according to the criterion of critical crack tip opening displacement (CTOD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Tkb is the critical temperature of brittleness at which at least 70% of a fibrous component is observed in the break of a full-thickness sample with a concentrator in the form of a notch under a three-point static bend to fracture.

  2. NDT is the critical temperature of brittleness (“nil ductility temperature”) defined as the maximum temperature at which a breakage of a standard-sized sample with brittle cladding and a crack-initiating notch under impact loading occurs.

REFERENCES

  1. Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., and Khlusova, E.I., Alloying principles, phase transformations, structure and properties of low-temperature weldable shipbuilding steels, Met. Sci. Heat Treat., 2007, vol. 49, nos. 1–2, pp. 3–9.

  2. Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., and Khlusova, E.I., Cold-resistant steels for technical means for development of the Arctic shelf, Vopr. Materialoved., 2009, no. 3 (59), pp. 108–126.

  3. Orlov, V.V., Principles of controlled formation of nanosized structural elements in pipe steels upon significant plastic deformations, Inorg. Mater.: Appl. Res., 2012, vol. 3, no. 6, pp. 466–474.

    Article  Google Scholar 

  4. Kruglova, A.A., Orlov, V.V., Sych, O.V., and Khlusova, E.I., Improvement of chemical composition and production regimes for manufacture of K65–K70 (X80–X90) strip based on simulation, Metallurgist, 2013, vol. 57, nos. 1–2, pp. 113–122.

    Article  CAS  Google Scholar 

  5. Korotovskaya, S.V., Orlov, V.V., and Khlusova, E.I., Control of structure formation during thermomechanical treatment of shipbuilding and pipe steels of unified chemical composition, Metallurgist, 2014, vol. 58, nos. 5–6, pp. 406–414.

    Article  CAS  Google Scholar 

  6. Zisman, A.A., Soshina, T.V., and Khlusova, E.I., Maps of structure changes in austenite of low carbon steel 09CrNi2MoCuV during hot deformation and their use to improve industrial technologies, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 6, pp. 570–577.

    Article  Google Scholar 

  7. Pazilova, U.A., Khlusova, E.I., and Kniaziuk, T.V., Influence of hot plastic deformation modes on the structure and properties of quenched hot rolled economically alloyed high-strength steel, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 6, pp. 1051–1059.

    Article  Google Scholar 

  8. Gusev, M.A., Il’in, A.V., and Larionov, A.V., Certification of shipbuilding materials for Arctic ships, Sudostroenie, 2014, no. 5 (816), pp. 39–43.

  9. Kazakov, A.A. and Kiselev, D.V., Modern methods for quality assessment of the structure of metals based on panoramic studies using the Thixomet image analyzer, in Perspektivnye materialy: Uchebnoe posobie (Advanced Materials: Manual), Tolyatti: Tol’yat. Gos. Univ., 2013, vol. 5.

  10. Kazakov, A.A., Kazakova, E.I., Kiselev, D.V., and Motovilina, G.D., Development of methods for evaluation of the microstructural heterogeneity of tubular steels, Chern. Met., 2009, no. 12, pp. 12–15.

  11. Khlusova, E.I., Golosienko, S.A., Motovilina, G.D., and Pazilova, U.A., Influence of doping on the structure and properties of high-strength cold-resistant steel after thermal and thermomechanical processing, Vopr. Materialoved., 2007, no. 1 (49), pp. 20–31.

  12. Golosienko, S.A., Motovilina, G.D., and Khlusova, E.I., Influence of the structure formed during quenching on the properties of high-strength cold-resistant steel after tempering, Vopr. Materialoved., 2008, no. 1 (53), pp. 33–46.

  13. Sych, O.V., Khlusova, E.I., Golosienko, S.A., Orlov, V.V., Mileikovskii, A.B., Galkin, V.V., Denisov, S.V., Steka-nov, P.A., and Malakhov, N.V., RF Patent 2465346, Byull. Izobret., 2012, no. 30.

  14. Malyshevskii, V.A., Khlusova, E.I., Golosienko, S.A., Khomyakova, N.F., Milyuts, V.G., Pavlova, A.G., Pazilova, U.A., Afanas’ev, S.Yu., and Gusev, A.A., RF Patent 2507295, Byull. Izobret., 2014, no. 5.

  15. Sych, O.V., Orlov, V.V., Khlusova, E.I., Yashina, E.A., Golubeva, M.V., Yakovleva, E.A., Mitrofanov, A.V., Sychov, O.N., and Gorodetskii, V.I., RF Patent 2653748, Byull. Izobret., 2018, no. 14.

  16. Sych, O.V., Khlusova, E.I., Golosienko, S.A., Yashina, E.A., Pazilova, U.A., Novoskol’tsev, N.S., Belyaev, V.A., Masanin, N.I., and Gusev, M.A., RF Patent Application 2016150730, 2016.

  17. Zisman, A.A., Petrov, S.N., and Ptashnik, A.V., Quantitative verification of high-strength alloyed steel bainite-martensite structures by scanning electron microscopy methods, Metallurgist, 2015, vol. 58, nos. 11–12, pp. 1019–1024.

    Article  CAS  Google Scholar 

  18. Kang, J.-Y., Kim, D.H., Baik, S.-I., Ahn, T.-H., Kim, Y.-W., Han, H.N., Oh, K.H., Lee, H.-C., and Han, S.H., Phase analysis of steels by grain-averaged EBSD Functions, ISIJ Int., 2011, vol. 51, no. 1, pp. 130–136.

    Article  CAS  Google Scholar 

  19. Il’in, A.V. and Gusev, M.A., New methods for analysis of the resistance to the destruction of metal pipes for main gas pipelines, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2013, no. 6 (1362), pp. 47–60.

  20. Sych, O.V., Gusev, M.A., Bashaev, V.K., Motovilina, G.D., and Ryabov, V.V., Cold resistance of high-strength alloy steel with a yield strength of 500 MPa, Nauchno-Tekh. Sb. Ross. Morsk. Reg. Sudokhodstva, 2014, no. 37, pp. 29–38.

  21. Sych, O.V., Kruglova, A.A., Schastlivtsev, V.M., Tabatchikova, T.I., and Yakovleva, I.L., Effect of vanadium on the precipitation strengthening upon tempering of a high-strength pipe steel with different initial structure, Phys. Met. Metallogr., 2016, vol. 117, no. 12, pp. 1270–1280.

    Article  CAS  Google Scholar 

  22. Wilson, J.A., Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2: Chemical characterization of dispersion strengthening precipitates, Mater. Sci. Technol., 2007, vol. 23, pp. 509–518.

    Article  Google Scholar 

  23. Golosienko, S.A., Soshina, T.V., and Khlusova, E.I., New high-strength cold-resistant steels used in the Arctic conditions, Proizvod. Prokata, 2014, no. 2, pp. 17–24.

  24. Sych, O.V., Orlov, V.V., Kruglova, A.A., and Khlusova, E.I., Change of the structure of high-strength pipe steel of K70–K80 durability class under various modes of high-temperature drawing after thermomechanical treatment, Vopr. Materialoved., 2011, no. 1 (65), pp. 89–99.

  25. Sych, O.V., Golubeva, M.V., and Khlusova, E.I., Development of cold-resistant welded steel of strength category 690 MPa for heavy-duty equipment operated in arctic conditions, Tyazh. Mashinostr., 2018, no. 4, pp. 17–25.

  26. Odesskii, P.D. and Smirnov, L.A., Vanadium and niobium in microalloyed steel for metal structures, Steel Transl., 2005, vol. 35, no. 6, pp. 63–73.

    Google Scholar 

  27. Fernández, A.I., Uranga, P., López, B., and Rodrigues-Ibabe, J.M., Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels, Mater. Sci. Eng., A, 2003, vol. 361, pp. 367–376.

    Article  Google Scholar 

  28. Soshina, T.V., Zisman, A.A., and Khlusova, E.I., The effect of microalloying by niobium on recrystallization processes in austenite of low-carbon alloyed steels, Vopr. Materialoved., 2013, no. 1 (73), pp. 31–36.

  29. Nastich, S.Yu., Effect of bainite component morphology on the microstructure of X70 low-alloyed steel on thick plate cold resistance, Metallurgist, 2012, vol. 56, nos. 3–4, pp. 196–204.

    Article  CAS  Google Scholar 

  30. Kazakov, A.A., Kiselev, D.V., Kazakova, E.I., Kurochkina, O.V., Khlusova, E.I., and Orlov, V.V., Influence of structural anisotropy in ferritic-bainitic steel strips after thermo-mechanical treatment on their mechanical properties, Chern. Met., 2010, no. 6, pp. 7–13.

  31. Pyshmintsev, I.Yu., Boryakova, A.N., Smirnov, M.A., and Dement’eva, N.V., Properties of low-carbon steels containing bainite in the structure, Metallurgist, 2009, vol. 53, nos. 11–12, pp. 735–742.

    Article  CAS  Google Scholar 

  32. Petrov, R., Kestens, L., Wasilkowska, A., and Houbaert, Y., Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique, Mater. Sci. Eng., A, 2007, vol. 447, pp. 285–297.

    Article  Google Scholar 

  33. Wright, S.I., Nowell, M.M., and Field, D.P., A review of strain analysis using electron backscatter diffraction, Microsc. Microanal., 2011, vol. 17, pp. 316–329.

    Article  CAS  Google Scholar 

  34. Rybin, V.V., Malyshevskii, V.A., and Semicheva, T.G., Development of the theory of secondary hardening in the creation of high-strength vessel steel grades, Vopr. Materialoved., 2005, no. 2 (42), pp. 55–68.

  35. Lambert-Perlade, A., Gourgues, A.F., Besson, J., et al., Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of high-strength low alloy steel, Metall. Mater. Trans. A, 2004, vol. 35, pp. 1039–1053.

    Article  Google Scholar 

  36. Guo, Z., Lee, C.S., and Morris, J.W., Jr., On coherent transformations in steel, Acta Mater., 2004, vol. 52, pp. 5511–5518.

    Article  CAS  Google Scholar 

  37. Hwang, B., Lee, C.G., and Kim, S.-J., Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels, Metall. Mater. Trans. A, 2011, vol. 42, no. 3, pp. 717–728.

    Article  CAS  Google Scholar 

  38. Zolotorevskii, N.Yu., Zisman, A.A., Panpurin, S.N., Titovets, Yu.F., Golosienko, S.A., and Khlusova, E.I., Effect of the grain size and deformation substructure of austenite on the crystal geometry of bainite and martensite in low-carbon steels, Met. Sci. Heat Treat., 2014, vol. 55, nos. 9–10, pp. 550–558.

    Article  Google Scholar 

  39. Schastlivtsev, V.M., Blind, L.B., Rodionov, D.P., and Yakovleva, N.L., The structure of the martensite package in structural steels, Fiz. Met. Metalloved., 1988, vol. 66, pp. 759–769.

    Google Scholar 

  40. Morito, S., Huang, X., Furuhara, T., Maki, T., and Hansen, N., The morphology and crystallography of lath martensite in alloy steels, Acta Mater., 2006, vol. 54, pp. 5323–5331.

    Article  CAS  Google Scholar 

  41. Takayama, N., Miyamoto, G., and Furuhara, T., Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater., 2012, vol. 60, pp. 2387–2396.

    Article  CAS  Google Scholar 

  42. Zisman, A.A., Zolotorevsky, N.Y., Petrov, S.N., Khlusova, E.I., and Yashina, E.A., Panoramic crystallographic analysis of structure evolution in low-carbon martensitic steel under tempering, Met. Sci. Heat Treat., 2018, vol. 60, nos. 3–4, pp. 142–149.

    Article  CAS  Google Scholar 

  43. Miyamoto, G., Iwata, N., Takayama, N., and Furuhara, T., Quantitative analysis of variant selection in ausformed lath martensite, Acta Mater., 2012, vol. 60, pp. 1139–1148.

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly supported within the scope of the project “Arctic Steel” according to state contract with the Ministry of Industry and Trade of the Russian Federation no. 16411.1810190019.09.003 of October 20, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sych.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sych, O.V. Scientific and Technological Bases for Developing Cold-Resistant Steel with a Guaranteed Yield Strength of 315–750 MPa for Arctic Conditions. Part 1: Alloying Principles and Requirements for Sheet Product Structure. Inorg. Mater. Appl. Res. 10, 1265–1281 (2019). https://doi.org/10.1134/S207511331906025X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511331906025X

Keywords:

Navigation