Skip to main content
Log in

High-Cycle Fatigue of Single Crystals of Nickel-Base Superalloy VZhM4

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

High-cycle fatigue of single crystals of nickel-rhenium-ruthenium-base superalloy VZhM4 with crystallographic orientation of 〈001〉, 〈011〉, and 〈111〉 within the temperature interval of 20–1000°C was investigated. Influence of the test temperature on the shape of the high-cycle fatigue curve was considered. It was found that single crystals of the alloy VZhM4 have negligible anisotropy of the fatigue limit at 1000°C on the basis of tests of 2× 107 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walston, S., Cetel, A., MacKay, R., et al., Joint development of a fourth generation single crystal superalloy, Proc. Tenth Int. Symp. on Superalloys 2004, Pennsylvania: Miner., Met. Mater. Soc., 2004, pp. 15–24.

    Chapter  Google Scholar 

  2. Koizumi, Y., Kobayashi, T., Yokokawa, T., et al., Development of next-generation Ni-base single crystal superalloys, Proc. Tenth Int. Symp. on Superalloys 2004, Pennsylvania: Miner., Met. Mater. Soc., 2004, pp. 35–43.

    Chapter  Google Scholar 

  3. Kablov, E.N., Petrushin, N.V., and Svetlov, I.L. Computer modeling of 4th generation heat resistant nickel alloy of for monocrystalline gas turbine blades, in Liteinye zharoprochnye slavy: Effekt S.T. Kishkina (Casting Heat-Resistant Alloys: Kishkin’s Effect), Moscow: Nauka, 2006, pp. 98–115.

    Google Scholar 

  4. Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33. doi 10.18577/2071-9140-2015-0-1-3-33

    Google Scholar 

  5. Harada, H., Development of Superalloys for 1700°C ultra-efficient gas turbines, Proc. 9th Liege Conf. “Materials for Advanced Power Engineering 2010,” Belgium: Univ. of Liège, 2010, pp. 604–614.

    Google Scholar 

  6. Argence, D., Vernault, C., Desvallées, Y., and Fournier, D., MC-NG: a 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes, Proc. Ninth Int. Symp. on Superalloys 2000, Pennsylvania: Miner., Met. Mater. Soc., 2000, pp. 829–837.

    Chapter  Google Scholar 

  7. Fifth Generation Nickel Base Single Crystal Superalloy TMS-196, Tokyo: Ishikawajima-Harima Heavy, 2006. https://doi.org/www.sakimori.nims.go.jp. Accessed December 21, 2011.

  8. Sato A., Harada H, Yeh An-C., et al., A 5th generation SC superalloy with balanced high temperature properties and processability, Proc. 11th Int. Symp. on Superalloys 2008, Pennsylvania: Miner., Met. Mater. Soc., 2008, pp. 131–138.

    Chapter  Google Scholar 

  9. Kablov, E.N., Petrushin, N.V., Svetlov, I.L., and Demonis, I.M., New nickel casted heat-resistant alloys, Aviats. Mater. Tekhnol., 2012, suppl., pp. 36–52.

    Google Scholar 

  10. Petrushin, N.V., Ospennikova, O.G., and Elyutin, E.S., Rhenium in monocrystalline heat resistant nickel alloys for gas turbine engine blades, Aviats. Mater. Tekhnol., 2014, suppl. 5, pp. 5–16. doi 10.18577/2071-9140-2014-0-s5-5-16

    Google Scholar 

  11. Shalin, R.E., Svetlov, I.L., Kachanov, E.B., Toloraiya, V.N., and Gavrilin, O.S., Monokristally nikelevykh zharoprochnykh splavov (Single Crystals of Nickel Heat-Resistant Alloys), Moscow: Mashinostroenie, 1997.

    Google Scholar 

  12. Svetlov, I.L., Petrushin, N.V., Golubovskii, E.R., Khvatskii, K.K., Shchegolev, D.V., and Elyutin, E.S., Mechanical properties of single crystals of a heat-resistant nickel alloy containing rhenium and ruthenium, Deform. Razrushenie Mater., 2008, no. 11, pp. 26–35.

    Google Scholar 

  13. Orlov, M.R., Ospennikova, O.G., and Avtaev, V.V., Deformation and destruction of single crystals of heatresistant nickel alloys under short-and long-term static loading, Deform. Razrushenie Mater., 2014, no. 3, pp. 17–23.

    Google Scholar 

  14. Petrushin, N.V., Visik, E.M., Gorbovets, M.A., and Nazarkin, R.M., Structure-phase characteristics and the mechanical properties of single-crystal nickelbased rhenium-containing superalloys with carbide–intermetallic hardening, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 7, pp. 630–641.

    Article  Google Scholar 

  15. Golubovskiy, E.R., Svetlov, I.L., Petrushin, N.V., Cherkasova, S.A., and Volkov, M.E., Low-cycle fatigue of nickel superalloy single crystals at elevated temperatures, Russ. Metall. (Engl. Transl.), 2010, vol. 2010, no. 8, pp. 941–947.

    Article  Google Scholar 

  16. Liu, Y., Yu, J.J., Xu, Y., Sun, X.F., Guan, H.R., and Hu, Z.Q., High cycle behavior of a single crystal superalloy at elevated temperatures, Mater. Sci. Eng., A, 2007, vols. 454–455, pp. 357–366.

    Article  CAS  Google Scholar 

  17. Morrissey, R.J., John, R., and Porter, W.J. III, Fatigue variability of a single crystal superalloy at elevated temperatures, Int. J. of Fatig., 2009, vol. 31, pp. 1758–1763.

    Article  CAS  Google Scholar 

  18. Wright, P.K., Jain, M., and Cameron, D., High cycle fatigue in a single crystal superalloy: time dependence at elevated temperature, Proc. Tenth Int. Symp. on Superalloys 2004, Pennsylvania: Miner., Met. Mater. Soc., 2004, pp. 657–666.

    Chapter  Google Scholar 

  19. Petukhov, A.N., Specific resistance of multi-cycle fatigue of casted parts from heat-resistant nickel alloys with particular crystallographic structure, in Novye tekhnologicheskie protsessy i nadezhnost’ GTD. Vyp. 7. Obespechenie prochnostnoi nadezhnosti rabochikh lopatok vysokotemperaturnykh turbin (New Technological Processes and Reliability of Gas Turbine Engines, No. 7: Strength of the Blades of Heat-Resistant Turbines), Moscow: Tsentr. Inst. Aviats. Motorostr., 2008, pp. 62–72.

    Google Scholar 

  20. Petrushin, N.V., Svetlov, I.L., Samoilov, A.I., Timofeeva, O.B., and Chabina, E.B., High-temperature phase and structural transformations in single crystals of a high-temperature nickel alloy containing rhenium and ruthenium, Part 1, Materialovedenie, 2008, no. 10, pp. 13–18

    Google Scholar 

  21. Petrushin, N.V., Svetlov, I.L., Samoilov, A.I., Timofeeva, O.B., and Chabina, E.B., High-temperature phase and structural transformations in single crystals of a high-temperature nickel alloy containing rhenium and ruthenium, Part 2, Materialovedenie, 2008, no. 11, pp. 26–31.

    Google Scholar 

  22. Svetlov, I.L., Iskhodzhanova, I.V., Evgenov, A.G., and Naprienko, S.A., High-temperature creep and the defect structure of nickel-based superalloy single crystals after hot isostatic pressing, Russ. Metall. (Engl. Transl.), 2012, vol. 2012, no. 4, pp. 330–335.

    Article  Google Scholar 

  23. Epishin, A.I. and Svetlov, I.L., Evolution of pore morphology in single-crystals of nickel-base superalloys, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 1, pp. 45–52.

    Article  Google Scholar 

  24. Svetlov, I.L., Khvatskii, K.K., Gorbovets, M.A., and Belyaev, M.S., Effect of hot isostatic pressing on the mechanical properties of casted heat-resistant nickel alloys, Aviats. Mater. Tekhnol., 2015, no. 3 (36), pp. 10–14. doi 10.18577/2071-9140-2015-0-3-10-14

    Google Scholar 

  25. Epishin, A.I., Bokstein, B.S., Svetlov, I.L., Fedelich, B., Feldmann, T., Le Bouar, Y., Ruffini, A., Finel, A., Viguier, B., and Poquillon, D., A vacancy model of pore annihilation during hot isostatic pressing of single crystals of nickel-base superalloys, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 57–65.

    Article  Google Scholar 

  26. Stepnov, M.N. and Shavrin, A.V., Statisticheskie metody obrabotki rezul’tatov mekhanicheskikh ispytanii: spravochnik (Statistical Data Processing in Mechanical Tests: Handbook), Moscow: Mashinostroenie, 2005.

    Google Scholar 

  27. Belyaev, M.S., Gorbovets, M.A., and Komarova, T.I., Test methods and expected limit of endurance for horizontal part of the fatigue curve, Aviats. Mater. Tekhnol., 2012, no. 3, pp. 50–55.

    Google Scholar 

  28. Belyaev, M.S., Morozova, L.V., Markova, E.S., and Yakusheva, N.A., Estimation of the high cycle fatigue behavior and type of fatigue failure of the VKS-180 high-resistance steel, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 4, pp. 573–578.

    Article  Google Scholar 

  29. Nikitin, A.D., Shanyavskiy, A.A., and Beklemishev, N.N., Fatigue behavior of titanium alloys under very high cycle fatigue loading, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 75–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Belyaev.

Additional information

Original Russian Text © M.S. Belyaev, N.V. Petrushin, 2017, published in Materialovedenie, 2017, No. 12, pp. 10–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, M.S., Petrushin, N.V. High-Cycle Fatigue of Single Crystals of Nickel-Base Superalloy VZhM4. Inorg. Mater. Appl. Res. 9, 655–662 (2018). https://doi.org/10.1134/S2075113318040044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318040044

Keywords

Navigation