Skip to main content
Log in

Antifriction carbon plastics in the machinery construction

  • Functional Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

High-strength antifriction carbon plastics characterized by dimension stability are used mainly in the shipbuilding, turbine and pump manufacturing, armature engineering and heavy machinery construction. The paper analyzes modified epoxy carbon fiber reinforced plastics (UGET), operating in water at contact pressures up to 100 MPa and a low-speed sliding 0.005–0.5 m/s. The modification of epoxy carbon fibers has been described at the molecular, nano-, micro-, macrolevels. The modifiers—optimal for each level—have been selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhareva, V.E. and Nikolaev, G.I., Sovremennye mashinostroitel’nye materialy. Nemetallicheskie materialy: Spravochnik, (Contemporary Machine-Building Materials. Nonmetallic Materials. A Handbook), Gorynin, I.V. and Oryshchenko, A.S., Eds., St. Petersburg: Professional, 2012.

  2. Rubin, M.B. and Bakhareva, V.E., Podshipniki v sudovoi tekhnike: Spravochnik (Bearings in Ship Technique: A Handbook), Moscow: Sudostroenie, 1987.

    Google Scholar 

  3. Oryshchenko, A.S., Bakhareva, V.E., Anisimov, A.V., and Lishevich, I.V., High-strength antifrictional elastoplastic slip bearings for shipbuilding and the power industry, Russ. Eng. Res., 2012, vol. 32, pp. 444–448.

    Article  Google Scholar 

  4. Akhmatov, A.S., Molekulyarnaya fizika granichnogo treniya (Molecular Physics of Boundary Friction), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  5. Trenie, iznashivanie i smazka: Spravochnik. V 2-kh t. (Friction, Wear and Lubrication: A Handbook. In 2 Vol.) Kragel’skii, I.V. and Alisin, V.V., Eds., Moscow: Mashinostroenie, 1979.

    Google Scholar 

  6. Goryacheva, I.G., Mekhanika friktsionnogo vzaimodeistviya (Mechanics of Friction Interaction), Moscow: Nauka, 2001.

    Google Scholar 

  7. Krasnov, A.P., Timofeev, V.A., Afonicheva, O.V., Buyaev, D.I., Chukalovsky, P.A., and Kuznetsov, V.V., Influence of tribochemical active bindings in creation of new reinforced antifrictional material, Vopr. Materialoved., 2006, no. 2, pp. 105–113.

    Google Scholar 

  8. Gorynin, I.V., Nanocomposites: Preferences and perspectives, Technopolis, 2006, vol. 21, pp. 20–21.

    Google Scholar 

  9. Bakhareva, V.E., Nikolaev, G.I., and Anisimov, A.V., Improvement of functional properties of antifriction polymer composites for slide friction nodes, Ross. Chim. J., 2009, vol. 53, no. 4, pp. 4–18.

    CAS  Google Scholar 

  10. Bakhareva, V.E., Anisimov, A.V., Blyshko, I.V., and Savelov, A.S., Modification of thermoset antifriction carbon plastics, Vopr. Materialoved., 2012, no. 4, pp. 66–80.

    Google Scholar 

  11. Bakhareva, V.E., Nikolaev, G.I., and Anisimov, A.V., Nonmetal antifriction materials for sliding friction units, Inorg. Mater.: Appl. Res., 2012, vol. 3, pp. 524–533.

    Article  Google Scholar 

  12. Irzhak, V.I., Rozenberg, B.A., and Enikolopyan, N.S., Setchatye polimery (sintez, struktura, svoistvo) (Network Polymers (Synthesis, Structure, Properties)), Moscow: Nauka, 1979.

    Google Scholar 

  13. Deev, I.S. and Kobets, L.P., Microstructure of epoxy matrices, Mekh. Kompoz. Mater., 1986, no. 1, pp. 3–8.

    Google Scholar 

  14. Nikolaev, G.I., Abozin, I.Yu., Bahareva, V.E., Lobyntseva, I.V., and Petrova, L.V., Antifriction characteristics of carbon-reinforced plastics versus the chemical composition and structure of an epoxy matrix, Vopr. Materialoved., 2001, no. 2, pp. 30–38.

    Google Scholar 

  15. Cuthrell, R.E., Epoxy polymers. part 3. Factors affecting the cure, J. Appl. Polym. Sci., 1968, vol. 147, pp. 955–967.

    Article  Google Scholar 

  16. Abozin, I.Yu., Bakhareva, V.E., and Rybin, V.V., Antifriction carbon-reinforced bearings versus the structure of carbon fibers, Vopr. Materialoved., 2001, no. 2, pp. 22–29.

    Google Scholar 

  17. Fitzer, E., Carbon Fibers and Their Composites, Berlin: Springer-Verlag, 1986.

    Google Scholar 

  18. Gunyaev, G.M., Struktura i svoistva polimernykh voloknistykh kompozitov (Structure and Properties of Polymer Fiber Composites), Moscow: Khimiya, 1981.

    Google Scholar 

  19. Bakhareva, V.E., Lishevich, I.V., and Sargsyan, A.S., New heat-resistant antifriction carbon plastics based on polyphenylene sulfide for friction units, operating without lubrication or greased by superheated water, Vopr. Materialoved., 2012, no. 4, pp. 160–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.E. Bakhareva, G.I. Nikolaev, A.S. Oryshchenko, published in Russian in Voprosy Materialovedeniya, 2012, No. 4(72), pp. 15–27.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhareva, V.E., Nikolaev, G.I. & Oryshchenko, A.S. Antifriction carbon plastics in the machinery construction. Inorg. Mater. Appl. Res. 4, 508–517 (2013). https://doi.org/10.1134/S2075113313060026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113313060026

Keywords

Navigation