Skip to main content
Log in

Time-varying correction algorithm of airborne gravimeter gyro vertical

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper considers the problem of improving the accuracy of gyro stabilized system of airborne gravimeter during the survey. To reduce the stabilization error, a time-varying correction algorithm is proposed, which accounts for the heading error during the maneuver. Performance of stabilization system is studied with different models of heading errors. The proposed algorithm demonstrates critically reduced transient time as compared with the traditional time-invariant algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peshekhonov, V.G., Sokolov, A.V., Elinson, L.S., and Krasnov, A.A., A new air-sea gravimeter: Development and test results, 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015. pp. 193–199.

    Google Scholar 

  2. Krasnov, A.A., Sokolov A.V., and Usov, S.V., Modern equipment and methods for gravity investigation in hard-to-reach regions, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 178–183.

    Article  Google Scholar 

  3. Bolotin, Yu.V. and Popelensky, M.Yu., Accuracy analysis of airborne gravity when gravimeter parameters are identified in flight, Journal of Mathematical Sciences, 2007, vol. 146, no. 3, pp. 5911–5919.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bolotin, Yu.V. and Doroshin, D.R., Adaptive filtering of airborne gravity data using hidden Markov models, Vestnik Moskovskogo universiteta, Ser. 1: Matematika. Mekhanika, 2011, no. 3, pp. 36–42.

    MathSciNet  Google Scholar 

  5. Koneshov, V.N., Koneshov, I.V., Klevtsov, V.V., Makushin, A.V., Smoller, Yu.L., Yurist, S.Sh., Bolotin, Yu.V., and Golovan, A.A., An approach to refined mapping of the anomalous gravity field in the Earth’s polar caps, Izvestiya. Physics of the Solid Earth, 2013, no. 1, pp. 77–79.

    Article  Google Scholar 

  6. Koneshov, V.N., Nepoklonov, V.B., Sermyagin, R.A., and Lidovskaya, E.A., On the estimation of accuracy for global models of gravitational field of the Earth, Izvestiya. Physics of the Solid Earth, 2014, no. 1, pp. 127–136.

    Article  Google Scholar 

  7. Zheleznyak, L.K., Koneshov, V.N., Mikhailov, P.S., and Solov’ev, V.N., Use of the Earth’s gravitational model in marine gravity measurements, Izvestiya. Physics of the Solid Earth, 2015, no. 4, pp. 559–565.

    Article  Google Scholar 

  8. Kulakova, V.I., Nebylov, A.V., and Stepanov, O.A., Using the H2/H8 approach to aviation gravimetry problems, Gyroscopy and Navigation, 2010, vol. 1, no. 2, pp. 141–145.

    Article  Google Scholar 

  9. Stepanov, O.A. and Koshaev, D.A., Analysis of filtering and smoothing techniques as applied to aerogravimetry, Gyroscopy and Navigation, 2010, vol. 1, no. 1, pp. 19–25.

    Article  Google Scholar 

  10. Bolotin, Yu.V. and Yurist S.Sh., Suboptimal smoothing filter for the marine gravimeter GT-2M, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 152–155.

    Article  Google Scholar 

  11. Bykovskii, A.V., Polynkov, A.V., and Arsen’ev, V.D., Gravimetric systems. Development experience, Aviakosmicheskoe priborostroenie, 2013, no. 12, pp. 11–19.

    Google Scholar 

  12. Stepanov, O.A., Koshaev, D.A., and Motorin A.V., Adaptive filtering in airborne gravimetry problems, 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, pp. 208–212.

  13. Krasnov A.A., Odintsov A.A., and Semenov I.V., Gyro stabilization system of a gravimeter, Gyroscopy and Navigation, 2010, vol. 1, no. 3, pp. 191–200.

    Article  Google Scholar 

  14. Torge, W., Gravimetry, New York, 1989.

    Google Scholar 

  15. Childers, V.A., Bell, R.E., and Brozena, J.M., Airborne gravimetry: An investigation of filtering, Geophysics, 1999, vol. 64, no. 1, pp. 61–69.

    Article  Google Scholar 

  16. Omerbashich, M., Integrated INS/GPS navigation from a popular perspective, Journal of Air Transportation, 2002. vol. 7, no. 1, pp. 103–118.

    Google Scholar 

  17. Chelpanov, I.B., Nesenyuk, P., and Braginskii, M.V., Raschet kharakteristik navigatsionnykh priborov (Calculation of Characteristics of Navigation Devices), Leningrad: Sudostroenie, 1978.

    Google Scholar 

  18. Loparev, A.V., Stepanov, O.A., and Chelpanov, I.B., Using frequency approach to time-variant filtering for processing of navigation information, Gyroscopy and Navigation, 2012, vol. 3, no. 1, pp. 9–19.

    Article  Google Scholar 

  19. Loparev, A.V., Stepanov, O.A., and Kulakova, V.I., Robust filtering using the method of local approximations of power spectral densities, Gyroscopy and Navigation, 2014, vol. 5, no. 1, pp. 40–43.

    Article  Google Scholar 

  20. Stepanov, O.A., Loparev, A.V., and Chelpanov, I.B., Time-and-frequency approach to navigation information processing, Automation and Remote Control, 2014, vol. 75, no. 6, pp. 1090–1108.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Dziuba.

Additional information

Published in Giroskopiya i Navigatsiya, 2015, No. 3, pp. 52–60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dziuba, A.N., Loparev, A.V. Time-varying correction algorithm of airborne gravimeter gyro vertical. Gyroscopy Navig. 6, 294–298 (2015). https://doi.org/10.1134/S2075108715040045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108715040045

Keywords

Navigation