Skip to main content
Log in

Adsorption of Organosilanes on the Surface of Inorganic Materials: 2. Adsorption on the Surface of Metals

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Organofunctional silanes are important surfactants capable of forming functional nanolayers on mineral surfaces, which can strengthen the interaction (adhesion) between the inorganic material (glass, silicon dioxide, carbon, etc.) and polymer (a binder in composites or a polymer coating); in the case of metal surfaces, the surfactants can inhibit metal corrosion. Articles devoted to the adsorption of organosilanes on metal surfaces under different conditions are reviewed. It is shown that organosilanes can be adsorbed onto the surface and form both mono- and polymolecular adsorption layers with a thickness of up to several hundred nanometers, which depends on the conditions of layer deposition. It is shown that the first monolayer on the freshly deposited aluminum surface is adsorbed irreversibly because of the polymolecular adsorption of ethoxysilanes from the vapor phase, and the adsorption bonds are of van der Waals nature. The isotherm of silane adsorption is described by the Langmuir and BET equations. The energy of the adsorption of silanes and the energy of landing pads of individual molecules, which are determined from the literature, are given. It is established that covalent bonds between silanes and aluminum (Al–O–Si) are formed on the metal surface in the presence of adsorbed water, while modification of a metal deposited from an aqueous solution with organosilanes leads to multilayer adsorption of triethoxysilanes. It is shown that silane (silanol and siloxane) molecules displace adsorbed water from the surface of freshly deposited aluminum when they adsorb chemically on it and form the surface layer from siloxane oligomers, which is capable of inhibiting the hydration of the metal-oxide film and, as a result, can slow down the processes of metal corrosion. The information about the effect of organosilicon surface layers on the adhesion of the polymer coating deposited on the surface of aluminum and data on the resistance of the adhesion of a coating to the influence of water are given. Both mechanisms of promoting the dry adhesion of an epoxy coating on the surface of aluminum and increasing the adhesion resistance of epoxy to water are clarified. The results of studying the adsorption of organosilanes from an aqueous solution onto the surfaces of aluminum, zinc, and iron by the method of piezoquartz nanoweighing are given. The following adsorption isotherm approaches known from the literature are used to interpret the adsorption data: the Langmuir, BET, Flory–Huggins, multisite Langmuir, Temkin, Frumkin, and Freindlich approaches. It is shown that silanes displace adsorbed water from a metal surface during adsorption and occupy from two-and-a-half (on the surface of aluminum) to more than six (on the surface of zinc) adsorption sites on the metal surface. The surface orientation of adsorbed molecules is determined. The heats of adsorption of silanes, which are calculated by various methods, are given. It is shown that silanes are adsorbed on metal surfaces by forming chemical bonds and that organosilanes and corrosion inhibitors can adsorb jointly on the metal surface. Analysis of the literature on the use of mixtures of silanes and corrosion inhibitors shows that the treatment of a metal surface with mixtures of organosilanes and corrosion inhibitors gives rise to the formation of a surface layer with a chemical structure different from that of the layers obtained by the treatment of the surface with solutions containing individual components of the mixture, which effectively inhibits the corrosion of metal under the coating and substantially increases the adhesion of the coating to the metal, even under the conditions of high humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Forsgren, A. and Knudsen, O., Corrosion Control Through Organic Coatings, Boca Raton, FL: Taylor & Francis, 2017.

    Google Scholar 

  2. Wypych, G., Handbook of Adhesion Promoters, Toronto: ChemTech Publ., 2018, p. 5.

    Google Scholar 

  3. Piueddemann, E.P., Silane Coupling Agents, New York: Plenum Press, 1991.

    Book  Google Scholar 

  4. Interface Engineering of Natural Fibre Composites for Maximum Performance, Zafeiropoulos, N.E., Ed., Oxford: Woodhead Publ., 2011, p. 48.

    Google Scholar 

  5. Arkles, B., Silane Coupling Agents: Connecting Across Boundaries, Morrisville, PA: Gelest Inc., p. 21.

  6. Petrunin, M.A., Gladkikh, N.A., Maleeva, M.A., Maksaeva, L.B., and Yurasova, T.A., Int. J. Corros. Scale Inhib., 2019, vol. 8, no. 4, p. 882.

    CAS  Google Scholar 

  7. Piueddemann, E.P., J. Adhes. Sci. Technol., 1991, vol. 5, no. 4, p. 261.

    Article  Google Scholar 

  8. Palanivel, V., Zhu, D.G., and van Ooij, W.J., Prog. Org. Coat., 2003, vol. 26, p. 384.

    Article  CAS  Google Scholar 

  9. Avdeev, Yu.P., Karpov, V.A., Maksaeva, L.B., and Petrunin, M.A., Int. J. Corros. Scale Inhib., 2014, vol. 3, no. 3, p. 198.

    Article  CAS  Google Scholar 

  10. Kuznetsov, Yu.I., Semiletov, A.M., Chirkunov, A.A., Arkhipushkin, I.A., Kazanskii, L.P., and Andreeva, N.P., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 4, p. 621.

    Article  CAS  Google Scholar 

  11. Wang, D. and Bierwagen, G.P., Prog. Org. Coat., 2009, vol. 64, p. 327.

    Article  CAS  Google Scholar 

  12. Ishida, H., in Molecular Characterization of Composite Interfaces, Ishida, H. and Kumar, G., Eds., New York: Plenum Press, 1985, p. 25.

    Book  Google Scholar 

  13. Netzer, L., Iscovici, R., and Sagiv, J., Thin Solid Films, 1983, vol. 99, p. 235.

    Article  CAS  Google Scholar 

  14. Voronkov, M.G., Advanced in Organosilicon Chemistry, Moscow: MIR Publ., 1985.

    Google Scholar 

  15. Pohl, R. and Chaves, A., in Silanes and Other Coupling Agents, Mittal, K.L., Ed., Utrecht: VSP, 2004, vol. 3, p. 3.

    Google Scholar 

  16. Pohl, R. and Osterholtz, F.D., in Molecular Characterization of Composite Interfaces, Ishida, H. and Kumar, G., Eds., New York: Springer, 1985, p. 157.

  17. Andrianov, K.A., Metody elementoorganicheskoi khimii. Kremnii (Methods for Organo-Element Chemistry. Silicon), Moscow: Nauka, 1968.

  18. Zhdanov, A.A., Andrianov, K.A., and Levitskii, M.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1976, no. 3, p. 395.

  19. Borisov, S.N., Voronkov, M.G., and Lukevits, E.Ya., Organosilicon Heteropolymers and Heterocompounds, New York: Plenum Press, 1970.

    Book  Google Scholar 

  20. Marschner, C., in Functional Molecular Silicon Compounds I. Regular Oxidation States, Scheschkewitz, D., Ed., Cham: Springer Int., 2014, p. 163.

    Google Scholar 

  21. Eisen, M.S., in The Chemistry of Organic Silicon Compounds, Rappoport, Z. and Apeloig, Y., Eds., Chichester: John Wiley and Sons, 1998, vol. 2, p. 2037.

    Google Scholar 

  22. Arkles, B., Steinmetz, J.R., Zazyczny, J., and Mehta, P., J. Adhes. Sci. Technol., 1992, vol. 6, no. 1, p. 193.

    Article  CAS  Google Scholar 

  23. Andrianov, K.A. and Zhdanov, A.A., J. Polym. Sci., 1958, vol. 30, no. 1, p. 513.

    Article  CAS  Google Scholar 

  24. Zhdanov, A.A., Andrianov, K.A., and Levitskii, M.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1976, no. 3, p. 395.

  25. Bukharov, S.V., Ilaldinov, I.Z., Klimentova, G.Yu., Nugumanova, G.N., and Gavrilov, V.I., Tekhnologiya tonkogo organicheskogo sinteza (Technology of Fine Organic Synthesis), part 3: Elementoorganicheskie soedineniya (Organo-Element Compounds), Kazan: Kazan State Technological Univ., 2006, p. 9.

  26. Erickson, P.W. and Plueddemann, E.P., in Interfaces in Polymer Matrix Composites, Plueddemann, E.P., Ed., vol. 6 of Composite Materials, Broutmann, L.J. and Krock, R.H., Eds., New York: Academic Press, 1974, p. 1.

  27. Thanu, D.P.R., Antoniswamy, A., Danaei, R., and Keswani, M., in Progress in Adhesion and Adhesives, Mittal, K.L., Ed., Hoboken, NJ: Wiley, 2019, vol. 4, p. 1.

    Google Scholar 

  28. Trakhtenberg, L.I., Lin, S.H., and Ilegbusi, O.J., Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, New York: Academic Press, 2007.

    Google Scholar 

  29. Plueddemann, E.P., in Adhesion Aspects of Polymeric Coatings, Mittal, K.L., Ed., New York: Plenum Press, 2011, p. 363.

    Google Scholar 

  30. Petrunin, M.A., Nazarov, A.P., and Mikhailovski, Yu.N., J. Electrochem. Soc., 1996, vol. 143, no. 1, p. 251.

    Article  CAS  Google Scholar 

  31. Kraus, E., Orf, L., Baudrit, B., Heidemeyer, P., Bastian, M., Bonenberger, R., and Stoyanov, O., Appl. Surf. Sci., 2016, vol. 371, p. 365.

    Article  CAS  Google Scholar 

  32. Boerio, F.J., Gosselin, C.A., Williams, J.W., Dillingham, R.G., and Burkstrand, J.M., in Molecular Characterization of Composite Interfaces, Ishida, H. and Kumar, G., Eds., New York: Springer, 1985, p. 171.

  33. Bolger, J.C., in Adhesion Aspects of Polymeric Coatings, Mittal, K.L., Ed., New York: Plenum Press, 2011, p. 3.

    Google Scholar 

  34. Fowkes, F.M., in Physicochemical Aspects of Polymer Surfaces, Mittal, K.L., Ed., New York: Plenum Press, 1983, vol. 2, p. 583.

    Google Scholar 

  35. Cox, B.G., Acids and Bases. Solvent Effects on Acid-Base Strength, Oxford: Oxford Univ. Press, 2013.

    Book  Google Scholar 

  36. Getzen, P.W. and Ward, T.M., J. Colloid Interface Sci., 1969, vol. 31, nos. 4–7, p. 441.

    Article  CAS  Google Scholar 

  37. Walker, P., in Silanes and other Coupling Agents, Mittal, K.L., Ed., Utrecht: VSP, 1992, p. 21.

    Google Scholar 

  38. Boerio, F.J. and Ondrus, D.E., J. Adhes., 1987, vol. 22, no. 1, p. 1.

    Article  CAS  Google Scholar 

  39. Petrunin, M.A., Nazarov, A.P., and Mikhailovskii, Yu.N., Zashch. Met., 1993, vol. 29, no. 2, p. 282.

    CAS  Google Scholar 

  40. Getting, G. and Kinloch, A.J., J. Mater. Sci., 1977, vol. 12, p. 2511.

    Article  Google Scholar 

  41. Diaz, F., Hetzler, U., and Kay, E., J. Am. Chem. Soc., 1977, vol. 99, no. 20, p. 6780.

    Article  CAS  Google Scholar 

  42. Cayless, R.A. and Perry, D.L., J. Adhes., 1988, vol. 26, nos. 2–3, p. 113.

    Article  CAS  Google Scholar 

  43. Allen, K.W., J. Adhes., 1982, vol. 14, p. 137.

    Article  CAS  Google Scholar 

  44. Boerio, F.J. and Dillingham, R.G., in Adhesive Joints, Mittal, K.L., Ed., New York: Plenum Press, 1984, p. 541.

    Google Scholar 

  45. Leidheiser, H., De Costa, M., and Granata, R.D., Corrosion, 1987, vol. 43, no. 6, p. 382.

    Article  CAS  Google Scholar 

  46. Zisman, W.A., Eng. Chem. Prod. Res. Dev., 1969, vol. 8, no. 2, p. 98.

    Article  CAS  Google Scholar 

  47. Marcinko, S. and Fadeev, A.Y., Langmuir, 2004, vol. 20, p. 2270.

    Article  CAS  Google Scholar 

  48. Greg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London, New York: Academic Press, 1982.

    Google Scholar 

  49. The Solid-Gas Interface, Flood, E.A., Ed., New York: Marcel Dekker, 1967.

    Google Scholar 

  50. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pieroti, R.A., Roquerol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 57, p. 603.

    Article  CAS  Google Scholar 

  51. Nazarov, A.P., Petrunin, M.A., and Mikhailovskii, Yu.N., Zashch. Met., 1987, vol. 23, no. 6, p. 1007.

    CAS  Google Scholar 

  52. Petrunin, M.A., Nazarov, A.P., and Mikhailovski, Yu.N., J. Electrochem. Soc., 1996, vol. 143, no. 1, p. 251.

    Article  CAS  Google Scholar 

  53. Petrunin, M.A., Nazarov, A.P., Zaitsev, R.M., and Mikhailovskii, Yu.N., Zashch. Met., 1990, vol. 26, no. 5, p. 759.

    CAS  Google Scholar 

  54. Ishida, H., in Adhesion Aspects of Polymeric Coatings, Mittal, K.L., Ed., New York: Plenum Press, 2011, p. 45.

    Google Scholar 

  55. Sperling, L.H. and Hu, R., in Polymer Blends Handbook, Utracki, L.A. and Wilkie, C.A., Eds., Dordrecht: Springer, 2014, p. 677.

  56. Selektor, S.L., Arslanov, V.V., and Ogarev, V.A., Zashch. Met., 1990, vol. 26, no. 4, p. 583.

    CAS  Google Scholar 

  57. Selektor, S.L., Petrunin, M.A., Nazarov, A.P., and Ogarev, V.A., Zashch. Met., 1990, vol. 26, no. 5, p. 848.

    CAS  Google Scholar 

  58. Petrunin, M.A., Gil’dengorn, V.D., and Nazarov, A.P., Zashch. Met., 1994, vol. 30, no. 2, p. 155.

    CAS  Google Scholar 

  59. Nazarov, A.P., Petrunin, M.A., and Mikhailovskii, Yu.N., Zashch. Met., 1992, vol. 28, no. 4, p. 564.

    CAS  Google Scholar 

  60. Petrunin, M.A., Gil’dengorn, V.D., Yurasova, T.A., Kudryavtsev, G.V., Nazarov, A.P., and Lisichkin, G.V., Zh. Fiz. Khim., 1992, vol. 66, no. 9, p. 2493.

    Google Scholar 

  61. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010, p. 286.

  62. Petty, M.C., Langmuir-Blodgett Films. An Introduction, Cambridge: Cambridge Univ. Press, 1996.

    Book  Google Scholar 

  63. McCafferty, E., J. Electrochem. Soc., 1999, vol. 146, no. 8, p. 2863.

    Article  CAS  Google Scholar 

  64. Natishan, P.M. and O’Grady, W.E., J. Electrochem. Soc., 2014, vol. 161, no. 9, p. C421.

    Article  CAS  Google Scholar 

  65. Boerio, F.J., Gosselin, C.A., Williams, J.W., Dillingham, R.G., and Burkstrand, J.M., in Molecular Characterization of Composite Interfaces, Ishida, H. and Kumar, G., Eds., New York: Springer, 1985, p. 171.

  66. Leygraf, C., Odnevall Wallinder, I., Tidblad, J., and Graedel, T., Atmospheric Corrosion, Hoboken, NJ: Wiley, 2016, p. 9.

    Book  Google Scholar 

  67. Bascom, W.D., Macromolecules, 1972, vol. 5, no. 6, p. 792.

    Article  CAS  Google Scholar 

  68. Sednev, V.A. and Savchenko, N.A., Fiz. Khim. Obrab. Mater., 2011, no. 6, p. 76.

  69. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 6, p. 656.

    Article  CAS  Google Scholar 

  70. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 6, p. 655.

    Article  CAS  Google Scholar 

  71. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Maleeva, M.A., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, p. 1010.

    Article  CAS  Google Scholar 

  72. Adsorption and Diffusion, Karge, H.G. and Weitkamp, J., Eds., Berlin: Springer, 2008, p. 6.

    Google Scholar 

  73. Goodwin, J.W., Colloids and Interfaces with Surfactants and Polymers—An Introduction, Chichester: Wiley, 2004, p. 32.

    Book  Google Scholar 

  74. Kern, P. and Landolt, D., Electrochim. Acta, 2001, vol. 47, p. 589.

    Article  CAS  Google Scholar 

  75. Kolpakova, N.A. and Minakova, T.S., Termodinamika i kinetika sorbtsionnogo kontsentrirovaniya (Thermodynamics and Kinetics of Sorption Concentrating), Tomsk: Tomsk Polytechnic Univ., 2011, part 1, p. 141.

  76. Yagodovskii, V.D., Adsorbtsiya (Adsorption), Moscow: BINOM. Laboratoriya Znanii, 2015, p. 155.

  77. Kabanov, B.N., Elektrokhimiya metallov i adsorbtsiya (Electrochemistry of Metals and Adsorption), Moscow: Nauka, 1966, p. 65.

  78. Kuprin, V.P. and Shcherbakov, A.B., Adsorbtsiya organicheskikh soedinenii na tverdoi poverkhnosti (Organic Compounds Adsorption on Hard Surface), Kyiv: Naukova Dumka, 1996, p. 7.

  79. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Gladkikh, N.A., Terekhova, E.V., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p. 964.

    Article  CAS  Google Scholar 

  80. Petrunin, M.A., Gladkikh, N.A., Maleeva, M.A., Maksaeva, L.B., Kostina, Yu.V., Shapagin, A.V., Yurasova, T.A., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 5, p. 895.

    Article  CAS  Google Scholar 

  81. Chirkunov, A., Semiletov, A.M., Kuznetsov, Yu.I., and Andreeva, N.P., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 7, p. 1154.

    Article  CAS  Google Scholar 

  82. Agafonkin, A.V., Kuznetsov, Yu.I., and Andreeva, N.P., Korroz.: Mater., Zashch., 2010, no. 8, p. 24.

  83. Shivane, C., Simhadii, N., and van Ooij, W.J., in Silane and Other Coupling Agents, Mittal, K.L., Ed., Leiden: VSP, 2007, vol. 4, p. 253.

    Google Scholar 

  84. Semiletov, A.M., Chirkunov, A.A., Kuznetsov, Yu.I., and Andreeva, N.P., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 12, p. 2271.

    Article  CAS  Google Scholar 

  85. Kuznetsov, Yu.I., Semiletov, A.M., Chirkunov, A.A., Arkhipushkin, I.A., Kazanskii, L.P., and Andreeva, N.P., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 4, p. 621.

    Article  CAS  Google Scholar 

  86. Montemor, M.F. and Ferreira, M.G.S., in Self-Healing Properties of New Surface Treatments, European Federation of Corrosion Publications no. 58, Fedrizzi, L., Furbeth, W., and Montemor, F., Eds., Leeds: Maney Publ., 2011, p. 39.

    Google Scholar 

  87. Men’shikov, V.V., Kalinkina, A.A., Mazurova, D.V., Akimova, E.F., and Vagramyan, T.A., Korroz.: Mater., Zashch., 2010, no. 4, p. 30.

  88. Salasi, M., Sliahrabi, T., Koayaci, E., and Aliofkhazrnei, M., Mater. Chem. Phys., 2007, vol. 104, p. 183.

    Article  CAS  Google Scholar 

  89. Zheludkevich, M.L., Raps, D., Hack, T., and Ferreira, M.G.S., in Self-Healing Properties of New Surface Treatments, European Federation of Corrosion Publications no. 58, Fedrizzi, L., Furbeth, W., Montemor, F., Eds., Leeds: Maney Publ., 2011, p. 11.

    Google Scholar 

  90. Gladkikh, N., Makarychev, Yu., Maleeva, M., Petrunin, M., Maksaeva, L., Rybkina, A., Marshakov, A., and Kuznetsov, Yu., Prog. Org. Coat., 2019, vol. 132, p. 481.

    Article  CAS  Google Scholar 

  91. Gladkikh, N., Makarychev, Yu., Chirkunov, A., Shapagin, A., Petrunin, M., Maksaeva, L., Maleeva, M., Yurasova, T., and Marshakov, A., Prog. Org. Coat., 2020, vol. 141, p. 105544.

    Article  CAS  Google Scholar 

  92. Gladkikh, N., Makarychev, Yu., Petrunin, M., Maleeva, M., Maksaeva, L., and Marshakov, A., Prog. Org. Coat., 2020, vol. 138, p. 105386.

    Article  CAS  Google Scholar 

  93. Kuznetsov, Yu.I. and Andreeva, N.P., Russ. J. Electrochem., 2012, vol. 48, no. 4, p. 442.

    Article  CAS  Google Scholar 

  94. Andreeva, N.P., Bober, Ya.G., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2009, no. 9, p. 29.

  95. Ogorodnikova, V.A., Kuznetsov, Yu.I., Andreeva, N.P., Luchkin, A.Yu., and Chirkunov, A.A., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 6, p. 1104.

    Article  CAS  Google Scholar 

  96. Andreeva, N.P., Kuznetsov, Yu.I., Semiletov, A.M., and Chirkunov, A.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 7, p. 1338.

    Article  CAS  Google Scholar 

  97. Kuznetsov, Yu.I., Semiletov, A.M., and Chirkunov, A.A., Int. J. Corros. Scale Inhib., 2016, vol. 5, no. 1, p. 31.

    Article  CAS  Google Scholar 

  98. Kuznetsov, Yu.I., Semiletov, A.M., Chirkunov, A.A., Arkhipushkin, I.A., Kazanskii, L.P., and Andreeva, N.P., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 4, p. 621.

    Article  CAS  Google Scholar 

  99. Semiletov, A.M., Chirkunov, A.A., and Kuznetsov, Yu.I., Mater. Corros., 2019, vol. 70, p. 1.

    Article  Google Scholar 

  100. Petrunin, M., Maksaeva, L., Gladkikh, N., Makarychev, Yu., Maleeva, M., Yurasova, T., and Nazarov, A., Coatings, 2020, vol. 10, p. 362.

    Article  CAS  Google Scholar 

  101. Nabavian, S., Naderi, R., and Asadi, N., in Advances in Organic Coatings 2018, Deflorian, F., Ed., Basel: MDPI, 2020, p. 61.

    Google Scholar 

Download references

Funding

This study was supported by the Program of Fundamental Research of the Presidium of the Russian Academy of Sciences no. 4P, “Actual Problems of the Physical Chemistry of Surfaces and the Development of New Composite Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kotenev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrunin, M.A., Maksaeva, L.B., Gladkikh, N.A. et al. Adsorption of Organosilanes on the Surface of Inorganic Materials: 2. Adsorption on the Surface of Metals. Prot Met Phys Chem Surf 58, 217–243 (2022). https://doi.org/10.1134/S2070205122020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122020149

Keywords:

Navigation