Skip to main content
Log in

Experimental and Theoretical Elucidation on the Inhibitive Performance of Landophia heudelotii Gum Extract on Acid Corrosion of Cold-Rolled Steel

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Investigation of inhibitive performance of Landophia heudelotii gum (LG) extract on acid corrosion of cold-rolled steel was conducted using gravimetric, electrochemical impedance spectroscopy (EIS), quantum chemical computation and molecular dynamics simulation techniques. Resultantly, LG extract significantly inhibited the corrosive action of the acid solutions (0.5 M H2SO4 and 0.5 M HCl solutions), and the effect was remarkable at elevated temperature of 40°C where the LG extract displayed highest inhibition efficiency (IE %) of 87.8 at 2.5 g/L and 81.6 at 2.0 g/L concentration in 0.5 M H2SO4 and 0.5 M HCl solutions, respectively. Adsorption and thermodynamic considerations suggest that the inhibiting molecules (quercetin, epicatechin, naringerin and kaempferol) were physically adsorbed on the metal surface. EIS results revealed that the charge transfer resistance (Rct) values were higher in 0.5 M H2SO4 solution than in 0.5 M HCl solution. Quantum chemical computation showed that epicatechin inhibiting molecule possessed the highest tendency to donate and accept electrons from the metal surface. Interestingly, epicatechin was confirmed to exhibit highest adsorption energy via molecular dynamic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Al-Amiery, A.A., Kadhum, A.A.H., Alobaidy, A.H.M., Mohamad, A.B., and Hoon, P.S., Materials, 2014, vol. 7, pp. 662–672. https://doi.org/10.3390/ma7020662

    Article  CAS  Google Scholar 

  2. Arukalam, I.O., Madufor, I.C., Ogbobe, O., and Oguzie, E.E., Chem. Eng. Commun., 2015, vol. 202, pp. 112–122. https://doi.org/10.1080/00986445.2013.838158

    Article  CAS  Google Scholar 

  3. da Rocha, J.C., Gomes, J.A.C.P., and D’Elia, E., Corros. Sci., 2010, vol. 52, pp. 2341–2348.

    Article  Google Scholar 

  4. Arukalam, I.O., Alaohuru, C.O., Ugbo, C.O., Jideofor, K.N., Ehirim, P.N., and Madufor, I.C., Int. J. Adv. Res. Technol., 2014, vol. 3, no. 3, pp. 5–16.

    Google Scholar 

  5. Abiola, O.K. and James, A.O., Corros. Sci., 2010, vol. 52, pp. 661–674.

    Article  CAS  Google Scholar 

  6. Arthur, D.A., Jonathan, A., Ameh, P.O., and Anya, C., Int. J. Ind. Chem., 2013, vol. 4, no. 2, pp. 1–9.

    Article  Google Scholar 

  7. Oguzie, E.E., Njoku, V.O., Enenebeaku, C.K., Akalezi, C.O., and Obi, C., Corros. Sci., 2008, vol. 50, pp. 3480–3486.

    Article  CAS  Google Scholar 

  8. Obot, I.O. and Obi-Egbedi, N.O., Corros. Sci., 2011, vol. 53, pp. 263–275.

    Article  Google Scholar 

  9. Arukalam, I.O., Madufor, I.C., Ogbobe, O., and Oguzie, E.E., Open Corros. J., 2014, vol. 6, pp. 1–10.

    Article  Google Scholar 

  10. Rajendran, S., Sridevi, S.P., Anthony, N., Amalraj, J.A., and Sundearavadivelu, M., Anti-Corros. Methods Mater., 2005, vol. 52, no. 2, pp. 102–107.

    Article  CAS  Google Scholar 

  11. Verma, C., Verma, D.K., Ebenso, E.E., and Quraishi, M.A., Heteroat. Chem., 2018, vol. 29, no. 4, p. e21437. https://doi.org/10.1002/hc.21437

    Article  CAS  Google Scholar 

  12. Chakravarthy, M.P. and Mohana, K.N., Int. Scholarly Res. Not., 2014, vol. 2014, article no. 687276. https://doi.org/10.1155/2014/687276

    Article  CAS  Google Scholar 

  13. Sanni, O., Fayomi, O.S.I., and Popoola, A.P.I., J. Phys.: Conf. Ser., 2019, vol. 1378, no. 4, article no. 042047. https://doi.org/10.1088/1742-6596/1378/4/042047

    Article  CAS  Google Scholar 

  14. Amitha Rani, B.E. and Basu, B.B.J., Int. J. Corros., 2012, vol. 2012, article no. 380217. https://doi.org/10.1155/2012/380217

    Article  Google Scholar 

  15. Chigondo, M. and Chigondo, F., J. Chem., 2016, vol. 2016, article no. 6208937. https://doi.org/10.1155/2016/6208937

    Article  CAS  Google Scholar 

  16. Njoku, V.O., Oguzie, E.E., Obi, C., and Ayuk, A.A., Adv. Chem., 2014, vol. 2014, article no. 808456. https://doi.org/10.1155/2014/808456

    Article  Google Scholar 

  17. Madu, J.O., Ifeakachukwu, C., Okorodudu, U., Adams, F.V., and Joseph, I.V., J. Phys.: Conf. Ser., 2019, vol. 1378, no. 2, article no. 022092. https://doi.org/10.1088/1742-6596/1378/2/022092

    Article  CAS  Google Scholar 

  18. Peter, A., Obot, I.B., and Sharma, S.K., Int. J. Ind. Chem., 2015, vol. 6, no. 3, pp. 153–164. https://doi.org/10.1007/s40090-015-0040-1

    Article  CAS  Google Scholar 

  19. Arukalam, I.O., Ishidi, E.Y., Obasi, H.C., Madu, I.O., Ezeani, O.E., and Owen, M.M., J. Polym. Res., 2020, vol. 27, article no. 80. https://doi.org/10.1007/s10965-020-02055-y

    Article  CAS  Google Scholar 

  20. Dar, M.A., Ind. Lubr. Tribol., 2011, vol. 63, no. 4, pp. 227–233. https://doi.org/10.1108/00368791111140431

    Article  Google Scholar 

  21. Loto, R.T. and Olowoyo, O., S. Afr. J. Chem. Eng., 2018, vol. 26, pp. 35–41.

    Google Scholar 

  22. Bouraoui, M.M., Chettouh, S., Chouchane, T., and Khellaf, N., J. Bio- Tribo-Corros., 2019, vol. 5, p. 28. https://doi.org/10.1007/s40735-019-0221-0

  23. Patni, N., Agarwal, S., and Shah, P., Chin. J. Eng., 2013, vol. 2013, article no. 784186. https://doi.org/10.1155/2013/784186

    Article  Google Scholar 

  24. Singh, A., Ebenso, E.E., and Quraishi, M.A., Int. J. Corros., 2012, vol. 2012, article no. 897430. https://doi.org/10.1155/2012/897430

    Article  CAS  Google Scholar 

  25. Loto, R.T., Results Phys., 2017, vol. 8, pp. 172–179.

    Article  Google Scholar 

  26. Ridhwan, A.M., Rahim, A.A., and Shah, A.M., Int. J. Electrochem. Sci., 2012, vol. 7, pp. 8091–8104.

    CAS  Google Scholar 

  27. Hazazi, O.A., Fawzy, A., and Awad, M., Int. J. Electrochem. Sci., 2014, vol. 9, pp. 4086–4103.

    Google Scholar 

  28. de Barros, I.B., Abud Kappel, M.A., dos Santos, P.M., da Veiga Junior, V.F., D’Elia, E., and Bastos, I.N., Mater. Res., 2016, vol. 19, no. 1. https://doi.org/10.1590/1980-5373-MR-2015-0494

  29. Agiriga, C.E., Oguzie, E., Chidiebere, A., Okorocha, N.J., and Chikwe, R.N., Pigm. Resin Technol., 2020, vol. 49, no. 5, pp. 387–392. https://doi.org/10.1108/PRT-02-2019-0015

    Article  CAS  Google Scholar 

  30. Arukalam, I.O., Carbohydr. Polym., 2014, vol. 112, pp. 291–299.

    Article  CAS  Google Scholar 

  31. Oguzie, E.E., Akalezi, C.O., Enenebeaku, C.K., and Anele, J.N., Chem. Eng. Commun., 2011, vol. 198, no. 1, pp. 46–60.

    Article  CAS  Google Scholar 

  32. Cruz, J., Martinez, R., Genesca, J., and Garcia-Ochoa, E., J. Anal. Chem., 2004, vol. 566, pp. 111–121.

    CAS  Google Scholar 

  33. Shukla, S.K. and Ebenso, E., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 3277–3291.

    CAS  Google Scholar 

  34. Adejoro, I.A., Ojo, F.K., and Obafemi, S.K., J. Taibah Univ. Sci., 2015, vol. 9, no. 2, pp. 196–202.

    Article  Google Scholar 

  35. Chakravarthy, M.P. and Mohana, K.N., Int. Scholarly Res. Not., 2014, vol. 2014, article no. 687276. https://doi.org/10.1155/2014/687276

    Article  CAS  Google Scholar 

  36. Arukalam, I.O., Madu, I.O., Ijomah, N.T., Ewulonu, C.M., and Onyeagoro, G.N., J. Mater., 2014, vol. 2014, article 101709. https://doi.org/10.1155/2014/101709

    Article  CAS  Google Scholar 

  37. Rbaa, M., Galai, M., El Kacimi, Y., Ouakki, M., Touir, R., Lakhrissi, B., and Ebn Touhami, M., Port. Electrochim. Acta, 2017, vol. 35, no. 6, p. 323. https://doi.org/10.4152/pea.201706323

    Article  CAS  Google Scholar 

  38. Singh, A., Caihong, Y., Yaocheng, Y., Soni, N., Wu, Y., and Lin, Y., ACS Omega, 2019, vol. 4, no. 2, pp. 3420–3431. https://doi.org/10.1021/acsomega.8b02983

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Africa Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology Owerri (FUTO), Nigeria, for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Innocent O. Arukalam.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innocent O. Arukalam Experimental and Theoretical Elucidation on the Inhibitive Performance of Landophia heudelotii Gum Extract on Acid Corrosion of Cold-Rolled Steel. Prot Met Phys Chem Surf 57, 1085–1096 (2021). https://doi.org/10.1134/S207020512105004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512105004X

Keywords:

Navigation